版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
新疆生產(chǎn)建設(shè)兵團二師華山中學(xué)2026屆數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.2.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.3.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.4.已知數(shù)列是等差數(shù)列,其前n項和為,則下列說法錯誤的是()A.數(shù)列一定是等比數(shù)列 B.數(shù)列一定是等差數(shù)列C.數(shù)列一定是等差數(shù)列 D.數(shù)列可能是常數(shù)數(shù)列5.雙曲線的漸近線方程為()A. B.C. D.6.已知命題,,若是一個充分不必要條件,則的取值范圍是()A. B.C. D.7.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.8.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.9.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.10.已知雙曲線的右焦點為F,雙曲線C的右支上有一點P滿是(點O為坐標(biāo)原點),那么雙曲線C的離心率為()A. B.C. D.11.已知橢圓的一個焦點坐標(biāo)是,則()A.5 B.2C.1 D.12.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.14.若圓和圓的公共弦所在的直線方程為,則______15.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項與第10,11項的和為68,則數(shù)列的通項公式是________.16.當(dāng)曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.18.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值19.(12分)在平面直角坐標(biāo)系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標(biāo);若不存在,請說明理由.20.(12分)設(shè):實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.21.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不相等的零點,證明:22.(10分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標(biāo);(2)若點到拋物線的焦點的距離是5,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.2、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.3、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D4、B【解析】可根據(jù)已知條件,設(shè)出公差為,選項A,可借助等比數(shù)列的定義使用數(shù)列是等差數(shù)列,來進行判定;選項B,數(shù)列,可以取,即可判斷;選項C,可設(shè),表示出再進行判斷;選項D,可采用換元,令,求得的關(guān)系即可判斷.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,選項A,數(shù)列是等差數(shù)列,那么為常數(shù),又,則數(shù)列一定是等比數(shù)列,所以選項A正確;選項B,當(dāng)時,數(shù)列不存在,故該選項錯誤;選項C,數(shù)列是等差數(shù)列,可設(shè)(A、B為常數(shù)),此時,,則為常數(shù),故數(shù)列一定是等差數(shù)列,所以該選項正確;選項D,,則,當(dāng)時,,此時數(shù)列可能是常數(shù)數(shù)列,故該選項正確.故選:B.5、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A6、A【解析】先化簡命題p,q,再根據(jù)是的一個充分不必要條件,由q求解.【詳解】因為命題,或,又是的一個充分不必要條件,所以,解得,所以的取值范圍是,故選:A7、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設(shè)平面ABC的法向量為,而,,則,即有,不妨令,則,故,設(shè)三棱柱的高為h,則,故選:D.8、D【解析】求得,根據(jù)的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關(guān)計算,屬于中檔題.9、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C10、D【解析】分析焦點三角形即可【詳解】如圖,設(shè)左焦點為,因為,所以不妨設(shè),則離心率故選:D11、C【解析】根據(jù)題意橢圓焦點在軸上,且,將橢圓方程化為標(biāo)準(zhǔn)形式,從而得出,得出答案.【詳解】由焦點坐標(biāo)是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標(biāo)是,則,解得故選:C12、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)14、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.15、【解析】利用基本量結(jié)合已知列方程組求解即可.【詳解】設(shè)等差數(shù)列的公差為由題可知即因為,所以解得:所以.故答案為:16、【解析】求出直線恒過的定點,結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設(shè)過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)代入點坐標(biāo),結(jié)合離心率,以及即得解;(2)設(shè)直線方程,與橢圓聯(lián)立,轉(zhuǎn)化為,結(jié)合韋達定理和判別式,分析即得解【小問1詳解】由題意可知:,解得:橢圓的標(biāo)準(zhǔn)方程為:【小問2詳解】①當(dāng)直線斜率不存在,方程為,則,.②當(dāng)直線斜率存在時,設(shè)直線方程為,聯(lián)立得:.由得:.設(shè),,則,,又,,,則,,所以,所以,解得:,又,綜上所述:的取值范圍為.18、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個法向量,平面的一個法向量,由求解.【詳解】(1)如圖所示:連接與交于點O,因為為正方形,故,又平面,故,由,故平面,取的中點M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個法向量為,則得令,則,故設(shè)平面的一個法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為19、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達定理法結(jié)合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準(zhǔn)線的拋物線,設(shè)拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達定理,得,,假設(shè)存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標(biāo)為.20、(1)(2)【解析】(1)首先分別求出、為真時參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問1詳解】解:當(dāng)時,,即,解得,即為真時,實數(shù)的取值范圍為實數(shù)滿足,即,解得:,即為真時,實數(shù)的取值范圍為因,所以,即;【小問2詳解】解:由,即,所以,因為是的充分不必要條件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;21、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號確定單調(diào)區(qū)間;(2)法一:討論、時的零點情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點可得,進而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域為(0,+∞),當(dāng)a=2時,,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當(dāng)a≤0時,>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個不相等的零點,當(dāng)a>0時,函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因為函數(shù)有兩個不相等的零點,則,不妨設(shè),設(shè),(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調(diào)遞減,即>=0,所以,即,又,故,因為,所以,因為函數(shù)在(2a,+∞)上單調(diào)遞增,所以,即法二:不妨設(shè),由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調(diào)遞減,故<=0,即恒成立因此,所以.【點睛】關(guān)鍵點點睛:第二問,法一:應(yīng)用極值點偏移方法構(gòu)造,將問題轉(zhuǎn)化為在(0,2a)恒成立,法二:根據(jù)零點可得,再由分析法將問題化為證明,構(gòu)造函數(shù),綜合運用換元法、導(dǎo)數(shù)證明結(jié)論.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣東河源市連平縣退役軍人事務(wù)局招聘編外人員3人筆試重點試題及答案解析
- 2026中國農(nóng)業(yè)科學(xué)院第一批招聘7人(農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所)考試核心題庫及答案解析
- 2025浙江寧波舜瑞產(chǎn)業(yè)控股集團有限公司招聘1人考試核心試題及答案解析
- 成都市人北實驗小學(xué)校2025-2026學(xué)年度校聘教師招聘考試重點試題及答案解析
- 2025年水產(chǎn)養(yǎng)殖銷售渠道合作協(xié)議
- 陜西漢水電力實業(yè)(集團)有限責(zé)任公司2025年供電服務(wù)業(yè)務(wù)部直聘用工招聘100人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025航天科技集團校招提前批筆試參考題庫附帶答案詳解(3卷合一版)
- 2025甘肅蘭阿煤業(yè)有限責(zé)任公司招聘筆試參考題庫附帶答案詳解(3卷)
- 2025浙江甬臺溫高速公路改擴建工程臺州北段招聘2人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025江西省港口集團有限公司春季校園招聘9人筆試參考題庫附帶答案詳解(3卷)
- 老照片修復(fù)效果統(tǒng)計表
- “十四五”數(shù)字經(jīng)濟發(fā)展規(guī)劃解讀與數(shù)字經(jīng)濟技術(shù)新趨勢
- DB11T 1230-2015 射擊場設(shè)置與安全要求
- 國開2023秋《幼兒園教育質(zhì)量評價》形考任務(wù)123 大作業(yè)參考答案
- 內(nèi)外部環(huán)境因素識別分析與監(jiān)視評審表
- 移動應(yīng)用程序權(quán)限管理與加固項目需求分析
- 中華人民共和國簡史學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 建筑施工事故案例PPT
- 核對稿300單元分析響應(yīng)
- GB/T 5097-2020無損檢測滲透檢測和磁粉檢測觀察條件
- GB/T 24689.2-2017植物保護機械殺蟲燈
評論
0/150
提交評論