版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省外國語學校2026屆高一上數(shù)學期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“,”的否定為A., B.,C., D.,2.設(shè)函數(shù)f(x)=2-x,x≤01,x>0,則滿足A.(-∞,-1]C.(-1,0) D.(-3.已知函數(shù),若存在互不相等的實數(shù),,滿足,則的取值范圍是()A. B.C. D.4.已知是的三個內(nèi)角,設(shè),若恒成立,則實數(shù)的取值范圍是()A. B.C. D.5.植物研究者在研究某種植物1-5年內(nèi)的植株高度時,將得到的數(shù)據(jù)用下圖直觀表示.現(xiàn)要根據(jù)這些數(shù)據(jù)用一個函數(shù)模型來描述這種植物在1-5年內(nèi)的生長規(guī)律,下列函數(shù)模型中符合要求的是()A.(且)B.(,且)C.D.6.已知過點和的直線與斜率為一2的直線平行,則m的值是A.-8 B.0C.2 D.107.我國南宋時期著名的數(shù)學家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法“三斜求積術(shù)”,即的面積,其中分別為的內(nèi)角的對邊,若,且,則的面積的最大值為()A. B.C. D.8.半徑為2,圓心角為的扇形的面積為()A. B.C. D.29.如圖所示韋恩圖中,若A={1,2,3,4,5},B={3,4,5,6,7},則陰影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,10.已知函數(shù),若關(guān)于x的方程恰有兩個不同的實數(shù)解,則實數(shù)m的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)(a>0且a≠1)的圖象恒過點定,若角終邊經(jīng)過點,則___________.12.如果實數(shù)滿足條件,那么的最大值為__________13.不等式的解集是__________14.點是一次函數(shù)圖象上一動點,則的最小值是______15.設(shè)函數(shù),若關(guān)于x的方程有四個不同的解,,,,,且,則m的取值范圍是_____,的取值范圍是__________16.若一個集合是另一個集合的子集,則稱兩個集合構(gòu)成“鯨吞”;對于集合,,若這兩個集合構(gòu)成“鯨吞”,則的取值為____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.化簡或求下列各式的值(1);(2)(lg5)2+lg5?lg20+18.設(shè)集合,,(1),求;(2)若“”是“”的充分條件,求的取值范圍19.已知函數(shù)fx=2sin(1)求fx(2)若fx在區(qū)間-π620.已知:,.設(shè)函數(shù)求:(1)的最小正周期;(2)的對稱中心,(3)若,且,求21.上海市某地鐵項目正在緊張建設(shè)中,通車后將給更多市民出行帶來便利,已知該線路通車后,地鐵的發(fā)車時間間隔t(單位:分鐘)滿足,,經(jīng)測算,在某一時段,地鐵載客量與發(fā)車時間間隔t相關(guān),當時地鐵可達到滿載狀態(tài),載客量為1200人,當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時載客量為560人,記地鐵載客量為.(1)求的解析式;(2)若該時段這條線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該時段這條線路每分鐘的凈收益最大?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】特稱命題的否定是全稱命題,并將結(jié)論否定,即可得答案.【詳解】命題“,”的否定為“,”.故選:A.【點睛】本題考查特稱命題的否定的書寫,是基礎(chǔ)題.2、D【解析】畫出函數(shù)的圖象,利用函數(shù)的單調(diào)性列出不等式轉(zhuǎn)化求解即可【詳解】解:函數(shù)f(x)=2滿足f(x+1)<f(2x),可得2x<0≤x+1或2x<x+1?0,解得x∈(-故選:D3、D【解析】作出函數(shù)的圖象,根據(jù)題意,得到,結(jié)合圖象求出的范圍,即可得出結(jié)果.【詳解】假設(shè),作出的圖象如下;由,所以,則令,所以,由,所以,所以,故.故選:D.【點睛】方法點睛:已知函數(shù)零點個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.4、D【解析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數(shù)二倍角公式、降次公式;5、B【解析】由散點圖直接選擇即可.【詳解】解:由散點圖可知,植物高度增長越來越緩慢,故選擇對數(shù)模型,即B符合.故選:B.6、A【解析】由題意可知kAB==-2,所以m=-8.故選A7、A【解析】先根據(jù)求出關(guān)系,代入面積公式,利用二次函數(shù)的知識求解最值.【詳解】因為,所以,即;由正弦定理可得,所以;當時,取到最大值.故選:A.8、D【解析】利用扇形的面積公式即得.【詳解】由題可得.故選:D9、D【解析】根據(jù)圖象確定陰影部分的集合元素特點,利用集合的交集和并集進行求解即可【詳解】陰影部分對應(yīng)的集合為{x|x∈A∪B且x?A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴陰影部分的集合為{1,2,6,7},故選D【點睛】本題主要考查集合的運算,根據(jù)Venn圖表示集合關(guān)系是解決本題的關(guān)鍵10、D【解析】根據(jù)題意,函數(shù)與圖像有兩個交點,進而作出函數(shù)圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為關(guān)于x的方程恰有兩個不同的實數(shù)解,所以函數(shù)與圖像有兩個交點,作出函數(shù)圖像,如圖,所以時,函數(shù)與圖像有兩個交點,所以實數(shù)m的取值范圍是故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用指數(shù)函數(shù)的性質(zhì)得出定點,由任意角三角函數(shù)的定義得出三角函數(shù)值,結(jié)合誘導(dǎo)公式代入求值即可【詳解】,且故答案為:12、1【解析】先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可【詳解】先根據(jù)約束條件畫出可行域,當直線過點時,z最大是1,故答案為1【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題13、【解析】根據(jù)對數(shù)不等式解法和對數(shù)函數(shù)的定義域得到關(guān)于的不等式組,解不等式組可得所求的解集【詳解】原不等式等價于,所以,解得,所以原不等式的解集為故答案為【點睛】解答本題時根據(jù)對數(shù)函數(shù)的單調(diào)性得到關(guān)于的不等式組即可,解題中容易出現(xiàn)的錯誤是忽視函數(shù)定義域,考查對數(shù)函數(shù)單調(diào)性的應(yīng)用及對數(shù)的定義,屬于基礎(chǔ)題14、【解析】把點代入函數(shù)的解析式得到,然后利用基本不等式求最小值.【詳解】由題意可知,又因為,所以,當且僅當即時等號成立所以的最小值是.故答案為:.15、①.②.【解析】畫出的圖象,結(jié)合圖象可得的取值范圍及,,再利用函數(shù)的單調(diào)性可求目標代數(shù)式的范圍.【詳解】的圖象如下圖所示,當時,直線與的圖象有四個不同的交點,即關(guān)于x的方程有四個不同的解,,,.結(jié)合圖象,不難得即又,得即,且,所以,設(shè),易知道在上單調(diào)遞增,所以,即的取值范圍是故答案為:,.思路點睛:知道函數(shù)零點的個數(shù),討論零點滿足的性質(zhì)時,一般可結(jié)合初等函數(shù)的圖象和性質(zhì)來處理,注意圖象的正確的刻畫.16、0【解析】根據(jù)題中定義,結(jié)合子集的定義進行求解即可.【詳解】當時,,顯然,符合題意;當時,顯然集合中元素是兩個互為相反數(shù)的實數(shù),而集合中的兩個元素不互為相反數(shù),所以集合、之間不存在子集關(guān)系,不符合題意,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解析】(1)進行分數(shù)指數(shù)冪的運算即可;(2)進行對數(shù)的運算即可【詳解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【點睛】本題主要考查分數(shù)指數(shù)冪和對數(shù)的運算,考查對數(shù)的換底公式.意在考查學生對這些知識的理解掌握水平和計算能力.18、(1)(2)或【解析】(1)先求集合B的補集,再與集合A取交集;(2)把“”是“”的充分條件轉(zhuǎn)化為集合A與B之間的關(guān)系再求解的取值范圍【小問1詳解】時,,又故【小問2詳解】由題意知:“”是“”的充分條件,即當時,,,滿足題意;當時,,欲滿足則必須解之得綜上得的取值范圍為或19、(1)π;單調(diào)遞減區(qū)間是π3+kπ,5π【解析】(1)直接利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果(2)由(1)知fx=sin2x-π【詳解】解:(1)由己知,有f=-=3所以fx的最小正周期:T=由π2得fx的單調(diào)遞減區(qū)間是π(2)由(1)知fx=sin所以2x-π要使fx在區(qū)間-π6即y=sin2x-π所以2m-π6所以m的最小值為π3【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于中檔題20、(1);(2)(k∈Z);(3)或.【解析】(1)解:由題意,,(1)函數(shù)的最小正周期為;(2),得,所以對稱中心;(3)由題意,,得或,所以或點睛:本題考查三角函數(shù)的恒等關(guān)系的綜合應(yīng)用.本題中,由向量的數(shù)量積,同時利用三角函數(shù)化簡的基本方法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年投資顧問面試考核題及參考答案
- 2026年部門秘書考試題庫與答案
- 2026年商業(yè)地產(chǎn)運營部主任工作要點與常見問題解析
- 2026年容器技術(shù)面試題集
- 初中英語寫作中祈使句誤用現(xiàn)象的認知診斷與干預(yù)策略課題報告教學研究課題報告
- 《基于云計算的智能客服系統(tǒng)安全性與隱私保護研究》教學研究課題報告
- 小學英語教學中戲劇表演法的語言輸出課題報告教學研究課題報告
- 基于人工智能的智慧校園學習環(huán)境自適應(yīng)調(diào)整機制在心理康復(fù)師培訓(xùn)課程設(shè)計中的應(yīng)用教學研究課題報告
- 高中生物實驗教學中實驗倫理教育融入研究課題報告教學研究課題報告
- 初中化學課程數(shù)字化評價對學生實驗操作能力培養(yǎng)的研究教學研究課題報告
- 多導(dǎo)睡眠監(jiān)測課件
- 碼頭岸電設(shè)施建設(shè)技術(shù)規(guī)范
- 統(tǒng)編版(2024新版)七年級上冊歷史期末復(fù)習考點提綱
- 乳腺癌化療藥物不良反應(yīng)及護理
- 支氣管鏡術(shù)后護理課件
- 高新技術(shù)產(chǎn)業(yè)園區(qū)建設(shè)項目可行性研究報告
- 項目HSE組織機構(gòu)和職責
- 零基礎(chǔ)AI日語-初階篇智慧樹知到期末考試答案章節(jié)答案2024年重慶對外經(jīng)貿(mào)學院
- MOOC 理論力學-長安大學 中國大學慕課答案
- JC∕T 942-2022 丁基橡膠防水密封膠粘帶
- MOOC 工程材料學-華中科技大學 中國大學慕課答案
評論
0/150
提交評論