版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第二十三章解直角三角形1.正弦、余弦、正切正弦:在Rt△ABC中,∠C=90°,把銳角A的_____與_____的比叫做∠A的正弦,記作sinA,即;余弦:在Rt△ABC中,∠C=90°,把銳角A的_____與_____的比叫做∠A的余弦,記作cosA,即;正切:在Rt△ABC中,∠C=90°,把銳角A的_____與_____的比叫做∠A的正切,記作tanA,則2.銳角三角函數(shù):銳角A的_____、_____、_____都是∠A的三角函數(shù).(其中:_____<∠A<_____)3.特殊角的三角函數(shù)值利用三角函數(shù)的定義,可求出30°、45°、60°角的各三角函數(shù)值,如下表所示:三角函數(shù)值特殊角30°45°60°sinαcosαtanα4.銳角三角函數(shù)的關(guān)系:在Rt△ABC中,若∠C為直角,則∠A與∠B互余時,有以下兩種關(guān)系:1)同角三角函數(shù)的關(guān)系:①平方關(guān)系:sin2②商數(shù)關(guān)系:tanA=2)互余兩角的三角函數(shù)關(guān)系:①互余關(guān)系:sinA=_____,即一個銳角的_____值等于它的余角的_____值.sinB=_____,即一個銳角的_____值等于它的余角的_____值.②倒數(shù)關(guān)系:tanA5.解直角三角形定義:一般地,直角三角形中,除直角外,共有五個元素,即_____和_____.由直角三角形中的已知元素,求出其余未知元素的過程,叫做解直角三角形.在解直角三角形的過程中,一般要用到下面一些關(guān)系:1)直角三角形的五個元素:邊:a、b、c,角:∠A、∠B.2)三邊之間的關(guān)系:_____.3)兩銳角之間的關(guān)系:_____.4)邊角之間的關(guān)系:sinA=_____,sinB=_____,cosA=_____,cosB=_____解直角三角形的常見類型已知條件解法步驟圖示兩邊斜邊和一直角邊(如a,c)兩直角邊(如a,b)一邊一角斜邊和一銳角(如c,∠A)一直角邊和一銳角(如a,∠A)另一直角邊和一銳角(如b,∠A)【總結(jié)】在直角三角形中,除直角外的五個元素中,已知其中的兩個元素(至少有_____),可求出其余的三個未知元素(知二求三).6.解直角三角形應(yīng)用題中的常見概念1)仰角、俯角視角:_____與_____的夾角叫做視角.仰角:在視線與水平線所成的角中,視線在水平線_____的角叫做仰角.俯角:在視線與水平線所成的角中,視線在水平線_____的角叫做俯角.【注意】仰角和俯角是相對于水平線而言的,在不同的位置觀測,仰角和俯角是不同的.2)坡度、坡角坡度:坡面的_____和_____的比叫做坡面的坡度(或坡比),記作i=_____坡角:_____與_____的夾角α叫做坡角.【注意】坡度與坡角是兩個不同的概念,坡角是兩個面的_____,坡度(用字母i表示)是比;兩者之壓間的關(guān)系是i=_____,坡角_____,坡度_____3)方位角、方向角方位角:從某點的指北方向線按_____轉(zhuǎn)到目標(biāo)方向的水平角叫做方位角,如圖①中,目標(biāo)方向PA,PB,PC的方位角分別為是_____,_____,_____.方向角:_____方向線與_____線所成的小于_____的水平角,叫做方向角,如圖②中的目標(biāo)方向線OA,OB,OC,OD的方向角分別表示_____30°,_____45°,_____80°,_____60°.序號易錯點易錯題注意事項1銳角三角函數(shù)概念混淆1-3正弦、余弦、正切是在直角三角形中進(jìn)行定義的,本質(zhì)是兩條線段的比,因此沒有單位,只與角的大小有關(guān),而與直角三角形的邊長無關(guān).2記錯特殊角三角函數(shù)值4-6有關(guān)特殊角的三角函數(shù)值的計算是一類重要題型,解這類問題時,要熟記30°、45°60°角的三種三角函數(shù)值,并能準(zhǔn)確地把值代入算式,結(jié)合實數(shù)的運(yùn)算順序及運(yùn)算法則進(jìn)行相關(guān)計算.3解直角三角形7-8題目若沒有直角三角形,有時需要通過輔助線來構(gòu)造直角三角形.4解直角三角形的實際應(yīng)用9-13理解仰角、俯角、坡角、坡比、方向角等的概念1.在中,,若的三邊都擴(kuò)大5倍,則的值()A.放大5倍 B.縮小5倍 C.不能確定 D.不變2.如圖,點A為邊上的任意一點,作于點C,于點D,下列用線段比表示出的值,正確的是(
)A. B. C. D.3.在中,,如果,那么等于(
)A. B. C. D.4.下列實數(shù)是有理數(shù)的是(
)A. B. C. D.5..6.在中,,則為三角形.7.如圖,在中,,,求.8.在中,,求的長.9.如圖,已知某山峰的海拔高度為米,一位登山者到達(dá)海拔高度為米的點處.測得山峰頂端的仰角為.則、兩點之間的距離為()A.米 B.米C.米 D.米10.如圖,一艘輪船航行至O點時,測得某燈塔A位于它的北偏東40°方向,且它與燈塔A相距13海里,繼續(xù)沿正東方向航行,航行至點B處時,測得燈塔A恰好在它的正北方向,則的距離可表示為(
)A.海里 B.海里 C.海里 D.海里11.如圖,在坡角為的山坡上有A、B兩棵樹,兩樹間的坡面距離米,則這兩棵樹的豎直距離可表示為()A.米 B.米 C.米 D.米12.圖1、圖2分別是某種型號跑步機(jī)的實物圖與示意圖.已知跑步機(jī)手柄與地面平行,支架、踏板的長分別為a,b,,記與地面的夾角為,則跑步機(jī)手柄所在直線與地面之間的距離表示正確的是(
)A. B.C. D.13.我國紙傘的制作工藝十分巧妙.如圖,兩條傘骨所成的角,點在傘柄上,,則的長度可表示為(
)A. B. C. D.重難點01銳角三角函數(shù)的相關(guān)概念1.(24-25九年級上·安徽安慶·階段練習(xí))如圖,點A為邊上的任意一點,作于點C,于點D,下列用線段比表示的值,錯誤的是()A. B. C. D.2.(20-21九年級上·廣東佛山·期末)在中,,若的三邊都擴(kuò)大5倍,則的值()A.放大5倍 B.縮小5倍 C.不能確定 D.不變3.(23-24九年級上·山東泰安·階段練習(xí))如圖,在中,,于點,則下列結(jié)論不正確的是(
)
A. B. C. D.4.(20-21九年級上·黑龍江哈爾濱·期末)如圖,在中,,設(shè),,所對的邊分別為,,,則下面四個等式一定成立的是(
)A. B. C. D.重難點02求角的正弦值/余弦值/正切值6.(24-25九年級上·安徽蚌埠·期末)如圖,在的正方形網(wǎng)格圖中,,,均為格點,則的值為(
)A. B. C. D.7.(23-24九年級上·安徽六安·期末)給出下列式子:①,②,③,④.其中正確的是()A.①③ B.②④ C.①④ D.③④8.(23-24九年級上·安徽安慶·期末)如圖,點A,,都是正方形網(wǎng)格的格點,連接,,則的正弦值為.9.(23-24九年級上·上海崇明·期中)如圖,在中,,,.
(1)求的長.(2)若點D在邊上,且,求的值.重難點03已知角的正弦值/余弦值/正切值求邊長10.(23-24九年級上·安徽宿州·期末)如圖,在中,對角線,相交于點,若,,,則的面積的值是.11.(23-24九年級上·安徽合肥·階段練習(xí))如圖,是的直徑,且經(jīng)過弦的中點,已知,,則的長的長度.
12.(23-24九年級上·安徽滁州·期末)如圖,在中,,.(1)求的值;(2)延長至點,使得,求的長.13.(23-24九年級上·安徽滁州·階段練習(xí))如圖,是的高線,垂足為點是的中線.,.(1)求的長;(2)求的值.重難點04特殊角三角函數(shù)值的混合運(yùn)算14.(24-25九年級上·安徽宿州·期末)計算:15.(23-24九年級上·安徽安慶·期末)計算:.16.(24-25九年級上·安徽亳州·期末)計算:.17.(24-25九年級上·安徽六安·階段練習(xí))我們規(guī)定:;.根據(jù)這個規(guī)定解答問題:(1)求的值;(2)求的值.重難點05由特殊角的三角函數(shù)值判斷三角形形狀18.(2024·江蘇淮安·一模)在中,若,,都是銳角,則是三角形.19.(22-23九年級上·山東泰安·階段練習(xí))在中,若,則是三角形.20.(22-23九年級上·河南周口·期末)如圖,是的中線,是銳角,,,.
(1)求的長.(2)求的值.重難點06已知角度比較三角函數(shù)值大小21.(23-24九年級上·山東東營·開學(xué)考試)三角函數(shù)、、之間的大小關(guān)系是(
)A. B.C. D.22.(22-23九年級上·安徽六安·階段練習(xí))如圖,已知和射線上一點(點與點不重合),且點到、的距離為、.(1)若,,,試比較、的大小;(2)若,,,都是銳角,且.試判斷、的大小,并給出證明.重難點07根據(jù)三角函數(shù)值判斷銳角的取值范圍23.(24-25九年級上·安徽亳州·期末)若是銳角,且,則(
)A. B.C. D.24.(20-21九年級上·安徽滁州·階段練習(xí))已知,則銳角的取值范圍是(
)A. B.C. D.25.(23-24九年級上·安徽宣城·期末)已知,則銳角的取值范圍是.重難點08互余兩角三角函數(shù)值關(guān)系26.(23-24九年級上·安徽滁州·階段練習(xí))在中,,則的值為.27.(21-22九年級上·安徽合肥·階段練習(xí))已知∠A為銳角,若cosA=sin65°,則∠A的度數(shù)為.28.(23-24九年級上·安徽亳州·階段練習(xí))如圖,在中,,再添加一個條件就能夠證明是直角三角形.
(1)給出下列四個條件:①;②;③;④,其中可以選擇的條件有____________(填序號);(2)在你所填的序號中,選擇其中一個加以證明.重難點09解直角三角形的相關(guān)計算29.(24-25九年級上·安徽安慶·期末)在等腰三角形中,一腰上的高為,這條高與底邊的夾角的正弦值為,則的面積是(
)A. B. C. D.30.(24-25九年級上·安徽亳州·階段練習(xí))如圖,在等腰中,,,是上一點,若,則的長為(
)A. B. C. D.31.(2024·安徽蚌埠·模擬預(yù)測)在中,分別是邊上的高,則(
)A. B. C. D.32.(24-25九年級上·安徽淮南·期中)如圖,在長方形中,,點為邊上的一個動點,以為邊向右作等邊,連接.當(dāng)點落在邊上時,的度數(shù)為;若,,線段的長度最小值為.33.(24-25九年級上·安徽蚌埠·階段練習(xí))如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與等邊三角形的邊,分別交于點M,N,且,點B位于經(jīng)x軸的正半軸,(1);(2).34.(24-25九年級上·安徽亳州·期末)如圖,,點在上,過點作的平行線,與的角平分線交于點,點在上(不與點,重合),連接,將線段繞點順時針旋轉(zhuǎn),得到線段,連接.(1)寫出線段和線段的數(shù)量關(guān)系,并證明;(2)求證:;(3)連接并延長,分別交,于點,,若,求的值.重難點10構(gòu)造直角三角形求不規(guī)則圖形的邊長或面積35.(23-24九年級上·安徽六安·階段練習(xí))如圖,在中,.(1)求的值.(2)求的面積(結(jié)果保留根號)36.(23-24九年級上·江蘇泰州·期中)如圖,是的中線,
求:(1)的長;(2)的正弦值.37.(22-23九年級上·山東煙臺·期中)如圖,在中,,,,求的長.(,)38.(22-23九年級上·山東聊城·階段練習(xí))在中,,,為銳角且.(1)求的面積;(2)求的值;(3)求的值.重難點11仰角俯角問題39.(24-25九年級上·安徽滁州·期末)如圖,某高樓上有一旗桿,某校數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識估測該高樓的高度,由于有其他建筑物遮擋視線不便測量,所以測量員沿坡度的山坡從坡腳的A處前行50米到達(dá)處,測得旗桿頂部的仰角為,旗桿底部的仰角為(測量員的身高忽略不計).已知旗桿高米,求該高樓OB的高度為多少米.(參考數(shù)據(jù):)40.(24-25九年級上·安徽滁州·期末)小明看到了天上自由飛翔的小鳥,突發(fā)奇想,準(zhǔn)備利用自己學(xué)過的銳角三角函數(shù)知識計算出小鳥飛行的高度.他在地面的點處利用測角儀測得小鳥在點處的仰角為,后,小鳥飛到了點處(點,在同一水平線上),此時測得仰角為.已知測角儀的高度是,且查閱資料可知該種小鳥的飛行速度約為,根據(jù)以上數(shù)據(jù)計算小鳥的飛行高度.(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,,,)41.(24-25九年級上·安徽亳州·期末)某數(shù)學(xué)小組在劉老師的指導(dǎo)下測量一建筑物高度,活動報告如下:活動報告活動目的測量建筑物的高度活動過程步驟一:設(shè)計測量方案(小組討論后,畫出如圖的測量示意圖)步驟二:準(zhǔn)備測量工具皮尺、測傾器步驟三:實地測量并記錄數(shù)據(jù)(,,,在同一平面上,于點)①建筑物前有一段斜坡,斜坡的坡度;②在斜坡的底部測得建筑物頂點的仰角為;③斜坡長52米;④在點測得建筑物頂點的仰角為.步驟四:計算建筑物的高度請結(jié)合以上信息完成步驟四:計算建筑物的高度.(參考數(shù)據(jù):,,,,).42.(24-25九年級上·安徽六安·階段練習(xí))在綜合實踐課上,數(shù)學(xué)興趣小組用所學(xué)的數(shù)學(xué)知識來解決實際問題,實踐報告如下:活動課題測量兩幢教學(xué)樓樓頂之間的距離活動工具測角儀、皮尺等測量過程【步驟一】如圖,在樓和樓之間豎直放置測角儀;【步驟二】利用測角儀測出樓頂?shù)难鼋?,樓頂?shù)难鼋?;【步驟三】利用皮尺測出米,米.測量圖示解決問題1根據(jù)以上測量數(shù)據(jù),利用三角函數(shù)知識求出樓的高度.解決問題2根據(jù)以上測量數(shù)據(jù),利用三角函數(shù)知識求兩幢樓樓頂,之間的距離.備注說明其中測角儀米,測角儀的底端M與樓的底部,在同一條水平直線上,圖中所有點均在同一平面內(nèi);參考數(shù)據(jù)請你幫助興趣小組解決以上問題1和問題2.重難點12方位角問題43.(24-25九年級上·安徽淮北·期末)如圖,某考察船在某海域進(jìn)行科考活動,在點A測得小島C在它的東北方向上,它沿南偏東方向航行了4海里到達(dá)點B處,又測得小島C在它的北偏東方向上.(1)求的度數(shù);(2)求點B與小島C之間的距離.(精確到0.1海里)(參考數(shù)據(jù):)44.(24-25九年級上·安徽合肥·期末)合肥駱崗公園不僅被稱為合肥市的“城市封面”與“超級生態(tài)新地標(biāo)”,還被譽(yù)為“世界最大城市公園”.如今,駱崗公園已成為合肥市民休閑娛樂的新去處,也是外地游客了解合肥、感受合肥魅力的重要窗口.如圖,,,,分別是駱崗公園的四個景點,在的正東方向,在的正北方向,且在的北偏西方向,在的北偏東方向,且在的北偏西方向,千米.(參考數(shù)據(jù):,,,,)(1)求的面積(結(jié)果精確到平方千米);(2)求的長度(結(jié)果精確到千米).45.(24-25九年級上·安徽合肥·階段練習(xí))如圖,某一海域有4個小島,其中小島位于同一條直線上,經(jīng)測量,小島A位于小島B北偏東且小島A位于小島C北偏東,小島B和小島C之間的距離為海里.(1)求小島A和小島C之間的距離的長;(結(jié)果保留根號)(2)若小島D位于小島A東偏南方向,求小島A與小島D之間的距離的長.(參考數(shù)據(jù):;結(jié)果精確到海里)46.(23-24九年級上·安徽合肥·期末)如圖,北部灣海面上,一艘解放軍軍艦在基地A的正東方向且距A地40海里的B處訓(xùn)練,突然接到基地命令,要該艦前往C島,接送一名病危的漁民到基地醫(yī)院救治.已知C島在A的北偏東方向,且在B的北偏西方向上,軍艦從B處出發(fā),平均每小時行駛40海里,需要多少小時才能把患病漁民送到基地醫(yī)院.(結(jié)果保留1位小數(shù))重難點13坡度坡比我問題47.(24-25九年級上·安徽宣城·期末)周末爬敬亭山是宣城市民的娛樂休閑、鍛煉身體的方式之一.上個周末小明同學(xué)從敬亭山西坡B處沿坡角為的山坡爬了350米到達(dá)E處,緊接著又沿坡角為的山坡爬了152米到達(dá)山頂A處,請計算敬亭山的高度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):,,,,)48.(21-22九年級上·安徽亳州·階段練習(xí))為測量底部不能到達(dá)的建筑物的高度,某數(shù)學(xué)興趣小組在山坡的頂端C處測得建筑物頂部A的仰角為,在山腳D處測得建筑物頂部A的仰角為,若山坡的坡度,坡長米,求建筑物的高度.(精確到1米)(參考數(shù)據(jù):,,,,)49.(23-24九年級上·安徽阜陽·期末)地鐵10號線某站點出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點A端6米的P處,用1.5米的測角儀測得電梯終端B處的仰角為,求電梯的坡度與長度.參考數(shù)據(jù):.50.(2024·安徽蚌埠·三模)2024年5月,“嫦娥六號”突破月球逆行軌道設(shè)計與控制、月背智能采樣和月背起飛上升等關(guān)鍵技術(shù),實施月球背面自動采樣返回,同時開展著陸區(qū)科學(xué)探測和國際合作,如圖,在斜坡上有一瞭望臺,斜坡的坡度為,坡長為50米,雷達(dá)的高度為10米,火箭發(fā)射,雷達(dá)中心測得火箭底端點的俯角為,僅2秒的時間,測得火箭上升至的處的仰角為,請根據(jù)以上數(shù)據(jù)估算火箭發(fā)射時速度.(結(jié)果保留整數(shù),參考數(shù)據(jù):,,)重難點14從實物中構(gòu)建數(shù)學(xué)模型51.(24-25九年級上·山東菏澤·期末)【實踐課題】通過測量相關(guān)距離與角度,計算待建環(huán)山路的長度.【實踐工具】測距儀,測角儀等測量工具.【實踐活動】如圖,某山的一側(cè)已建成了三段休閑步道,數(shù)學(xué)實踐小組經(jīng)過現(xiàn)場勘探,畫出示意圖,休閑步道分別是,,,且A,,,在同一水平面上.經(jīng)過多次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗中的醫(yī)學(xué)轉(zhuǎn)化實踐
- 生物材料與血管化策略研究
- 生物可吸收支架術(shù)后雙抗治療時長新進(jìn)展
- 生物制劑臨床試驗中受試者退出干預(yù)機(jī)制
- 林業(yè)集團(tuán)總會計師考試題庫
- 運(yùn)動康復(fù)師面試題及專業(yè)知識梳理含答案
- 交互設(shè)計考試題及答案解析
- 深度解析(2026)《GBT 19486-2004電子政務(wù)主題詞表編制規(guī)則》
- 生命末期醫(yī)療決策中的知情同意替代方案
- 土壤環(huán)境測試技術(shù)規(guī)范
- 項目整體維護(hù)方案(3篇)
- 心肌病健康宣教
- 2025-2030中國泥漿刀閘閥行業(yè)需求狀況及應(yīng)用前景預(yù)測報告
- 選礦廠崗位安全操作規(guī)程
- 成人床旁心電監(jiān)護(hù)護(hù)理規(guī)程
- T/CEPPEA 5028-2023陸上風(fēng)力發(fā)電機(jī)組預(yù)應(yīng)力預(yù)制混凝土塔筒施工與質(zhì)量驗收規(guī)范
- DB3308173-2025化工企業(yè)消防與工藝應(yīng)急處置隊建設(shè)規(guī)范
- 2025股權(quán)質(zhì)押借款合同范本
- 電遷改監(jiān)理實施細(xì)則
- 促脈證中醫(yī)護(hù)理方案
- 排污許可合同模板
評論
0/150
提交評論