版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
procurementsupercharged:
whathappenswhenagenticaiorchestratessource-to-pay
Sponsoredby:
EP·
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
executivesummary
Procurementfunctionstodayfacemountingpressureto
accelerateprocesseswhilereducingmanualwork.AgenticAIrepresentstheneweststageinarti?cialintelligence
evolution,movingbeyondsimpleautomationto
autonomousagentsthatcanreason,makedecisions,andactonbehalfofprocurementprofessionals.
ThiseBookexploreshowtheseintelligentagentsare
reshapingsource-to-pay.Here,readerswilllearnhow
thesesystemsarefundamentallydifferentfromtraditionalroboticprocessautomation(RPA)models,astheytransformprocessesthroughorchestratedwork?owsthatrequire
minimalhumanintervention.
CONTRIBUTORS
ChrisGovers
GEP
AndrewTumath
GEP
Sponsoredby:9GEP2
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
theevolutionofagenticaiinprocurement
Al,GenAl,LLMsandAlAgents
ficiantellienceA
acineearnin
eearninviaNNs
Emulatehumanintelligencewithcomputersystems
Beyondinferencerules,fore.g.,classification(s);clustering(u-s)
Neuralnetworks(likeourbrains)withalgorithmicfeedback
Generatepredictedcontent(“typeaheadonsteroids”;images/videos)
GenAlmodels(text)pre-trainedonmassdatasetsusing“transformer”architecture.“Language”canbemultilingualprose,metadata,computercodeoreven“l(fā)egalese”
AIAgents
CommercialLLMs:GPT4/o1/o3,Llama,Gemini,Claude,Qwen,DeepSeekV3,Grok.Manyarefinetunedforreasoningcapabilities(andcanalsobeagentic)
Agentic
Frameworks
Intelligentchatbots,copilotsandautonomousagents:off-the-shelf(ChatGPT,MS-Copilot,Gemini,Perplexity,Claude,Grok,DeepSeekR1)orcustom-developed/-tuned
Source:SpendMatters
Thejourneyfrombasicarti?cialintelligencetoagentic
systemsrepresentsafundamentalshiftinhowprocurementtechnologyoperates.TraditionalAIstartedwithmachine
learningandevolvedthroughdeeplearningtogenerativeAIandlargelanguagemodels.
ThesefoundationsnowsupportagenticAI,whichcombinesallpreviousinnovationsintoautonomoussystemscapableofindependentaction.
howagenticairedeHnesautomation
Thekeydifferentiatorliesinwhatthecontributorscall
“ReAct,”whichreferstothecombinationofreasoningandaction.Whilelargelanguagemodelscananalyzedataandgenerateresponses,theycannotreasonthroughcomplexproblemsorexecutedecisionsintherealworld.
Sponsoredby:9GEP3
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
HOWAGENTICAIISDIFFERENTFROMRPAORLLM
AnalyzeData
04
01
TakeAction
AgenticAi
Plan
02
●
05Collaborate
Strategically
ReasonandMake
06
03
AchieveGoals
Decisions
AgenticAIbridgesthisgapbyincorporatingsixcriticalcapabilities:
?Dataanalysis
?Strategicplanning
?Reasoninganddecision-making
?Actionexecution
?Collaborationacrosstechstacks
?Goalachievement
GEP’sexperiencewithover8millionsuppliersintheir
ecosystemprovidesthedatafoundationnecessaryfor
effectiveagenticAIimplementation.Thisvastdataset
enablesagentstomakeinformeddecisionsbasedonrealmarketconditionsratherthantheoreticalmodels.
“There’sthisphrasegoingaroundthatrelates
toagenticAI:‘ReAct,’thatis,reasonandaction.LLMsallowyoutoanalyzedatatogenerate
responses,whereasAIagentsmakeadifferencebyreasoninglikeahumanbeing,?guringoutasolutiontoaproblem,andthentakingsteps.”
AndrewTumath
GEP
Sponsoredby:9GEP4
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
Anticipatesanddeliversonuserneedsproactively
Dynamicallyorchestratesdecisionsandwork?ows
Self-optimizesandself-regulateswithouthumanintervention
autonomousserviceecosystems
self-organizingsystems
agenticaievolution
networkofagents
Outcome-drivenwith
autonomous,end-to-endexecution
Context-awareagents
autonomouslyretrievereal-timedataacrosssystems
Delivershyper-personalizedexperiencesthrough
continuousadaptation
traditionalai
saassolutions
Requireshumaninputthroughdashboardsandinterfaces
Siloedappswithdataintegrationissues
Needsfrequentupdatesandmanualtuning
generative&agenticai
evolutiontowardautonomousserviceecosystems
Theevolutioncontinuesasorganizationsprogressfrom
manualprocurementsolutionstowardnetwork-basedagentsystemsthatorchestrateentirework?owsautonomously.Inthisfuturestate,agentswillanticipateuserneedsanddeliversolutionsproactively.
Currentimplementationsalreadydemonstratesigni?cantvalue,butthetechnologycontinuesevolvingrapidly.
OrganizationsthatbeginimplementingagenticAI
todaypositionthemselvestobene?tfromincreasinglysophisticatedcapabilitiesasthetechnologymatures.
keysuggestions
?UnderstandtheReActframeworkbefore
implementingagenticAIsolutions.This
combinationofreasoningandactioncapabilitiesdistinguishesagenticAIfromprevious
automationtechnologies.
?Prioritizedataqualityasthefoundationfor
successfulagentimplementation.High-qualitydatainputensuresagentscanmakeinformed
decisionsanddelivervaluableoutcomes.
Sponsoredby:9GEP5
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
transformingsource-to-paywithmulti-agentsystems
?RequisitionAnalyzingAgent
?SupplierOnboardingAgent
?ProfileEnrichmentAgent
?PerformanceMonitorAgent
?CommunicationSummarizeAgent
?SupplierDiscoveryAgent
?AutoNegotiationAgent
Autonomous
?BidResponseAnalysisAgent
Sourcing
C
Intelligent
Category
Management
Management/Collaboration
Supplier
P?
SUPERAGENT
?ExpiryMonitoringAgent
?MetadataExtractionAgent
?ObligationExtractionAgent
?Post-SignaturePerformanceTrackerAgent
?MarketInsightsAgent?SpendAnalysisAgent
?StrategyBuilderAgent
?StrategyTrackerAgent
1:ORCHESTRATION
Risk
Management
Contract
2:TASKAUTOMATION
Lifecycle
Management
?OrchestrationAgent
?ItemRecommendationAgent
?OrderTrackingAgent
?ReceivingAgent
?SupplierScreeningAgent
Procure-to-Pay
(P2P)
?RiskClauseExtractorAgent
?TransactionAnomalyAgent
?RegulatoryComplianceAgent
Multi-agentsystemsrepresentadeparturefromsingle-
pointsolutionstowardorchestratednetworksofspecializedagents.Unliketraditionalprocurementplatformsrequiringuserstonavigatebetweendifferentmodules,agenticAI
createsseamlesswork?owswhereacentralorchestratormanagestheentireprocess.
Thisorchestratoractslikeanautonomousdriver,
coordinatingvariousspecializedagentswhilemaintaininghumanoversightwhereneeded.
theimportanceofhuman
intelligenceinagenticprocurement
Thehumanelementremainscrucialevenasautomation
increases.Procurementprofessionalscanberesponsible
forthinkingstrategically,sourcingethically,understandingnuance,andmaking?naljudgmentcalls,whileagentsexcelatspeed,scale,contextawareness,andpatternrecognition.
Thisdivisionoflaborallowshumanstofocuson
high-valuestrategicactivitieswhileagentshandleroutineoperationaltasks.
ThebalancebetweenhumanandAIresponsibilities
willcontinueshiftingastechnologyadvances.Currentimplementationsshowagentscaninterprethuman
emotionsandreactionsduringnegotiations,adjustingstrategiesbasedonsupplierresponsiveness.
FuturedevelopmentsmayexpandAIcapabilitiesinareas
currentlydominatedbyhumanintelligence,thoughhumanoversightwillremainessentialforethicalandstrategic
decision-making.
Sponsoredby:9GEP6
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
HumanRequest
HumanReview
UIAGENT
ORCHESTRATOR
AGENT
SELF-REFLECTION
SOURCINGNEGOTIATIONSCONTRACTSCOMPLIANCE
AGENTAGENTAGENTAGENT
howamulti-agentsystemworks
Multi-agentsystemsalsoaddressacommonprocurementchallenge:organizationalsilos.Agentscansharelearningsacrossregions,categories,andbusinessunits,creating
uni?edglobalapproaches.
Anagentthatsuccessfullyonboardsasupplierinonelocationcanapplythoselessonstosimilarsituations
worldwide,promotingconsistencyandbestpracticesacrosstheorganization.
keysuggestions
?Designagentimplementationsthatpreserve
humancontroloverstrategicandethicaldecisions.ThemosteffectivesystemscombineAIef?ciency
withhumanjudgmentforoptimaloutcomes.
?Implementorchestrationagentstocoordinate
work?owsacrossmultiplespecializedagents.Thisapproacheliminatessilosandcreatesseamlessend-to-endprocurementexperiences.
“Whentheorchestratoragentisactivated,itdetermineswhethersomethingisasourcingrequest,whetheritneedstonegotiatewithasupplieronthecompany’sbehalf,orifitshouldmoveintocreatingacontract.Italsochecksifeverythingmeetscompanyrulesandhowpeopleareinvolved.Theagentcontinuously
reviewsitsownactionsbeforemovingforward,makingtheprocessasindependentaspossible.”
ChrisGovers
GEP
Sponsoredby:9GEP7
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
thereal-worldapplications
ofagenticaiinsource-to-pay
CurrentagenticAIimplementationsinprocurementfocusonthreeprimaryareasthatdeliverimmediatevalueto
organizations.Theorchestrationagentservesasthecentralcommandcenter,interpretinguserrequestsanddirectingappropriatespecializedagentstocompletetasks.
Whenausersimplystates“Ineedasustainabilityconsultant,”theorchestrationagentanalyzesthisrequest,checksagainstexistingcatalogs,andeithercreatesarequisitionortriggersasourcingeventbasedonprede?nedbusinessrules.
autonegotiationandbidanalysis
Negotiationagentsdemonstratesophisticatedcapabilitiesbydetectingsupplieremotionsandadjustingstrategies
accordingly.Theseagentscanapplytargetpricingbasedoninitialbids,thenengagesuppliersinfollow-upnegotiationstoachievebetterterms.
Thebidresponseanalysisagentcomplementsthisbyevaluatingresponsesline-by-lineandmakingawardrecommendationsbasedoncomprehensivecriteria,includingprice,quality,andsupplierperformance.
ThenegotiationprocessshowcasestheReActframeworkinaction.Agentsreasonthroughoptimalnegotiation
approachesbasedonsupplierbehaviorpatterns,thenactbysendingtargetedcommunications.Ifasupplierappearsreceptivebasedontheirresponsepatterns,theagent
mightpursuemoreaggressivepricingdiscussions.
Conversely,ifasupplierseemsresistant,theagentadjustsitsapproachtomaintainrelationshipintegritywhilestill
seekingfavorableterms.
Sponsoredby:9GEP8
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
supplieronboardingandproHleenhancement
Supplieronboardingrepresentsanotherhigh-impact
applicationwhereagentssigni?cantlyreducemanualeffort.
Whencreatinganewsupplierpro?le,agentsautomaticallygatherinformationfrompubliclyavailablesources,
includingcorporateregistries,existingGEPsupplier
databases,andmarketintelligenceplatforms.Thispre-
populationeliminatesmostmanualdataentryforsupplierswhileensuringpro?lecompletenessandaccuracy.
Thesupplierpro?leenhancementagentgoesbeyondbasicdatacollection.Itguidessuppliersthroughstep-by-step
onboardingprocessescustomizedtoeachorganization’srequirements.Thiscon?gurabilityensurescompliance
withspeci?ccompanypolicieswhilecreatingconsistentexperiencesacrossallsupplierrelationships.
Thesystembene?tsboththebuyingorganizationandsuppliersbystreamliningwhattraditionallyrepresentsacumbersome,manualprocess.
keysuggestions
?StartagenticAIimplementationwithhigh-volume,repetitiveprocesseslikesupplieronboarding.
TheseareasprovideclearROIwhilebuilding
organizationalcon?denceinagentcapabilities.
?Focusonorchestrationcapabilitiesthatconnectmultipleprocurementfunctionsseamlessly.End-to-endautomationdeliversmorevaluethanpointsolutionstargetingindividualtasks.
“InourAI-generatedsummaryofasourcing
event,twosupplierssubmittedtheirbids,andthesummaryshowswhichbidsofferthebestsavings.Thesystemalsosuggeststhenext
beststepsbecausetheorchestrationagentunderstandstheoverallgoal:togetthebestpriceforthebestproducts.”
AndrewTumath
GEP
Sponsoredby:9GEP9
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
thefutureofai-drivenprocurement
Thefutureofprocurementliesinincreasinglysophisticatedagenttypesthathandleprogressivelycomplex
responsibilities.Fivedistinctagentcategorieswillshapethisevolution:
?Re?exAgents:handlebasicprocurementinquiriesandautomatedresponsessimilartocurrentRPAbots.
?Model-basedAgents:useapplicationdatatomonitorsupplierrisksanddetectspendinganomalies.
?Goal-basedAgents:focusonspeci?coutcomeslikestrategicsourcingeventsorsupplierdiscoverybasedonde?nedcriteria.
?Utility-basedAgents:makesophisticateddecisions
consideringmultiplevariablesandconstraints,suchasoptimizingsourcingdecisionsacrosscost,quality,andriskfactors.
?LearningAgents:forcontinuouslyimprovingperformancethroughaccumulatedexperience.
Learningagentsrepresentthemostadvancedcategory,buildingcollectiveintelligencethatimprovesovertime.
Theseagentsanalyzenegotiationpatterns,supplier
performancetrends,andmarketdynamicstoidentifyopportunitiesandrisks.
Theycandetectfraudulentactivities,predictmarket
changes,andrecommendstrategicimprovementsbasedonaccumulatedexperienceacrosstheentireplatform.
Sponsoredby:9GEP10
procureconInsIGHTS
procurementsupercharged:whathappens
whenagenticaiorchestratessource-to-pay
thenextevolutionin
BEFORE?TRADITIONALPROCUREMENT
ai-drivenprocurement
?SlowerProcurementCycles
?LowerEfficiency&Productivity
?IncreasedRisk&Gut-BasedDecision-Making
?LimitedScalability&Short-TermViability
?DelayedKnowledgeProcessing
?Fragmented&InefficientUserExperience
Thevisionextendsbeyondcurrentcapabilitiestowardtrulyautonomousserviceecosystems.
Notably,thisevolutionwon’teliminatehumanrolesbut
ratherreshapethemtowardhigher-valuestrategicactivities.Thesesystemswillanticipateuserneedsbeforethey’re
explicitlystated,proactivelymanagingsupplierrelationshipsandmarketopportunities.
AFTER?NEW-AGEAGENTICAI
?FasterProcurementCycles
?HigherEfficiency&Productivity
?ImprovedRisk&Data-DrivenDecision-Making
?Future-ProofScalability
?AcceleratedKnowledgeProcessing
?SeamlessUserExperience
Organizationsmustprepareforthistransitionbyidentifyingrepetitivetaskssuitableforagentdelegationwhile
maintainingstrategicoversight.AItechnologyfaces
ongoingchallengeslikebias,hallucinations,andincorrectdecision-making.However,itstrajectoryinprocurement
suggeststhefunctionwillbecomeincreasinglyautomated.
keysuggestions
?Identifyyourtop?verepetitivetasksthatcouldbedelegatedtoagentstoday.Thisexercisehelpsprioritizeimplementationareaswiththehighestpotentialimpact.
?Planfortheevolutionofagentcapabilitiesratherthanviewingcurrentimplementationsasstaticsolutions.Technologyadvancementwillcontinuouslyexpandwhatagentscanaccomplishautonomously.
“Wedon’twanttosuggestthatAIagentscan?xeverythingimmediately.That’ssimplynottrue.
AI—includingagenti
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文件材料歸檔范圍解析
- 《GB 30184-2013瀝青基防水卷材單位產(chǎn)品能源消耗限額》專題研究報(bào)告
- 《GBT 34474.1-2017 鋼中帶狀組織的評(píng)定 第 1 部分:標(biāo)準(zhǔn)評(píng)級(jí)圖法》專題研究報(bào)告
- 《GB-T 5949-2014透明石英玻璃氣泡、氣線試驗(yàn)方法》專題研究報(bào)告
- 《儲(chǔ)能材料與器件分析測(cè)試技術(shù)》課件-PH測(cè)試與分析
- 《藥品生物檢定技術(shù)》創(chuàng)新課件-助眠餅干
- 應(yīng)收賬款保理業(yè)務(wù)擔(dān)保協(xié)議
- 智能馬桶維修技師崗位招聘考試試卷及答案
- 軸承行業(yè)滾動(dòng)軸承設(shè)計(jì)工程師崗位招聘考試試卷及答案
- 2026年醫(yī)務(wù)管理的工作規(guī)劃、思路以及詳細(xì)計(jì)劃表
- 四川省達(dá)州市達(dá)川中學(xué)2025-2026學(xué)年八年級(jí)上學(xué)期第二次月考數(shù)學(xué)試題(無(wú)答案)
- 2025陜西西安市工會(huì)系統(tǒng)開(kāi)招聘工會(huì)社會(huì)工作者61人歷年題庫(kù)帶答案解析
- 外賣平臺(tái)2025年商家協(xié)議
- 2025年高職(鐵道車輛技術(shù))鐵道車輛制動(dòng)試題及答案
- (新教材)2026年人教版八年級(jí)下冊(cè)數(shù)學(xué) 24.4 數(shù)據(jù)的分組 課件
- 2025陜西榆林市榆陽(yáng)區(qū)部分區(qū)屬國(guó)有企業(yè)招聘20人考試筆試模擬試題及答案解析
- 老年慢性病管理及康復(fù)護(hù)理
- 2025廣西自然資源職業(yè)技術(shù)學(xué)院下半年招聘工作人員150人(公共基礎(chǔ)知識(shí))測(cè)試題帶答案解析
- 2026年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握校ㄓ?jì)算機(jī))考試參考題庫(kù)及答案1套
- 代辦執(zhí)照合同范本
- 2025天津大學(xué)管理崗位集中招聘15人備考考點(diǎn)試題及答案解析
評(píng)論
0/150
提交評(píng)論