2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第1頁
2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第2頁
2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第3頁
2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第4頁
2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題復(fù)習(xí)題附答案一、解答題1.如圖,用兩個(gè)面積為的小正方形拼成一個(gè)大的正方形.(1)則大正方形的邊長是;(2)若沿著大正方形邊的方向裁出一個(gè)長方形,能否使裁出的長方形紙片的長寬之比為,且面積為?2.喜歡探究的亮亮同學(xué)拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.(1)亮亮想知道正方形紙片的邊長,請(qǐng)你幫他求出正方形紙片的邊長;(結(jié)果保留根號(hào))(2)在長方形紙片上截出兩個(gè)完整的正方形紙片,面積分別為和,亮亮認(rèn)為兩個(gè)正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,)3.工人師傅準(zhǔn)備從一塊面積為36平方分米的正方形工料上裁剪出一塊面積為24平方分米的長方形的工件.(1)求正方形工料的邊長;(2)若要求裁下的長方形的長寬的比為4:3,問這塊正方形工料是否滿足需要?(參考數(shù)據(jù):,)4.張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為3:2.他不知能否裁得出來,正在發(fā)愁.李明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?5.?dāng)?shù)學(xué)活動(dòng)課上,小新和小葵各自拿著不同的長方形紙片在做數(shù)學(xué)問題探究.(1)小新經(jīng)過測(cè)量和計(jì)算得到長方形紙片的長寬之比為3:2,面積為30,請(qǐng)求出該長方形紙片的長和寬;(2)小葵在長方形內(nèi)畫出邊長為a,b的兩個(gè)正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過測(cè)量和計(jì)算得到長方形紙片的周長為50,陰影部分兩個(gè)長方形的周長之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請(qǐng)說明理由.二、解答題6.已知,AB∥DE,點(diǎn)C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點(diǎn)C作CF⊥BC交ED的延長線于點(diǎn)F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點(diǎn)G,連接GB并延長至點(diǎn)H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針方向每秒3°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動(dòng),當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.8.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請(qǐng)直接寫出答案,用含的式子表示).9.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.10.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說明理由,若不變化,求出么的度數(shù).三、解答題11.已知,點(diǎn)為平面內(nèi)一點(diǎn),于.(1)如圖1,點(diǎn)在兩條平行線外,則與之間的數(shù)量關(guān)系為______;(2)點(diǎn)在兩條平行線之間,過點(diǎn)作于點(diǎn).①如圖2,說明成立的理由;②如圖3,平分交于點(diǎn)平分交于點(diǎn).若,求的度數(shù).12.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請(qǐng)說明你的結(jié)論.13.長江汛期即將來臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈B射線自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視,若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足.假定這一帶長江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉(zhuǎn)動(dòng)45秒,燈A射線才開始轉(zhuǎn)動(dòng),當(dāng)燈B射線第一次到達(dá)時(shí)運(yùn)動(dòng)停止,問A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)之前.若射出的光束交于點(diǎn)C,過C作交于點(diǎn)D,則在轉(zhuǎn)動(dòng)過程中,與的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.14.已知,交AC于點(diǎn)E,交AB于點(diǎn)F.(1)如圖1,若點(diǎn)D在邊BC上,①補(bǔ)全圖形;②求證:.(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.①若點(diǎn)G是線段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點(diǎn)G是線段EC上的一點(diǎn),請(qǐng)你直接寫出,,之間的數(shù)量關(guān)系.15.問題情境(1)如圖1,已知,,,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得________.問題遷移(2)圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,,,與相交于點(diǎn),有一動(dòng)點(diǎn)在邊上運(yùn)動(dòng),連接,,記,.①如圖2,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與,之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),與,之間有何數(shù)量關(guān)系?請(qǐng)判斷并說明理由;拓展延伸(3)當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),若,的角平分線,相交于點(diǎn),請(qǐng)直接寫出與,之間的數(shù)量關(guān)系.四、解答題16.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說明理由.17.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.18.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說明理由;【問題遷移】如圖2,DF∥CE,點(diǎn)P在三角板AB邊上滑動(dòng),∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),如果α=30°,β=40°,則∠DPC=°.(2)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說明理由.(圖1)(圖2)19.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)20.閱讀下列材料并解答問題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢(mèng)想三角形”例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是120°,40°,20°,這個(gè)三角形就是一個(gè)“夢(mèng)想三角形”.反之,若一個(gè)三角形是“夢(mèng)想三角形”,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.(1)如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢(mèng)想三角形”,為什么?(3)如圖2,點(diǎn)D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取一點(diǎn)F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢(mèng)想三角形”,求∠B的度數(shù).【參考答案】一、解答題1.(1);(2)無法裁出這樣的長方形.【分析】(1)先計(jì)算兩個(gè)小正方形的面積之和,在根據(jù)算術(shù)平方根的定義,即可求解;(2)設(shè)長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小解析:(1);(2)無法裁出這樣的長方形.【分析】(1)先計(jì)算兩個(gè)小正方形的面積之和,在根據(jù)算術(shù)平方根的定義,即可求解;(2)設(shè)長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小即可.【詳解】解:(1)由題意得,大正方形的面積為200+200=400cm2,∴邊長為:;根據(jù)題意設(shè)長方形長為cm,寬為cm,由題:則長為無法裁出這樣的長方形.【點(diǎn)睛】本題考查了算術(shù)平方根,根據(jù)題意列出算式(方程)是解決此題的關(guān)鍵.2.(1);(2)不同意,理由見解析【分析】(1)設(shè)正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個(gè)正方形紙片的面積計(jì)算出兩個(gè)正方形的邊長,計(jì)算兩個(gè)解析:(1);(2)不同意,理由見解析【分析】(1)設(shè)正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個(gè)正方形紙片的面積計(jì)算出兩個(gè)正方形的邊長,計(jì)算兩個(gè)正方形邊長的和,并與3比較即可解答.【詳解】解:(1)設(shè)正方形邊長為,則,由算術(shù)平方根的意義可知,所以正方形的邊長是.(2)不同意.因?yàn)椋簝蓚€(gè)小正方形的面積分別為和,則它們的邊長分別為和.,即兩個(gè)正方形邊長的和約為,所以,即兩個(gè)正方形邊長的和大于長方形的長,所以不能在長方形紙片上截出兩個(gè)完整的面積分別為和的正方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根的應(yīng)用,解題的關(guān)鍵是讀懂題意并熟知算術(shù)平方根的概念.3.(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(解析:(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(1)正方形工料的邊長為分米;(2)設(shè)長方形的長為4a分米,則寬為3a分米.則,解得:,長為,寬為∴滿足要求.【點(diǎn)睛】本題主要考查了算術(shù)平方根及實(shí)數(shù)大小比較,用了轉(zhuǎn)化思想,即把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題.4.不同意,理由見解析.【詳解】試題分析:設(shè)面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于解析:不同意,理由見解析.【詳解】試題分析:設(shè)面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于>20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.試題解析:解:不同意李明的說法.設(shè)長方形紙片的長為3x(x>0)cm,則寬為2xcm,依題意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x==,∴長方形紙片的長為cm,∵50>49,∴>7,∴>21,即長方形紙片的長大于20cm,由正方形紙片的面積為400cm2,可知其邊長為20cm,∴長方形紙片的長大于正方形紙片的邊長.答:李明不能用這塊紙片裁出符合要求的長方形紙片.點(diǎn)睛:本題考查了算術(shù)平方根的定義:一個(gè)正數(shù)的正的平方根叫這個(gè)數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無理數(shù)的大?。?.(1)長為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個(gè)長方形的周長之和為30列方程解析:(1)長為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個(gè)長方形的周長之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設(shè)長為3x,寬為2x,則:3x?2x=30,∴x=(負(fù)值舍去),∴3x=,2x=,答:這個(gè)長方形紙片的長為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點(diǎn)睛】本題考查了算術(shù)平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.二、解答題6.(1)證明見解析;(2);(3).【分析】(1)過點(diǎn)作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點(diǎn)作,同(1)的方法,先根據(jù)平行線的性質(zhì)解析:(1)證明見解析;(2);(3).【分析】(1)過點(diǎn)作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點(diǎn)作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點(diǎn)作,延長至點(diǎn),先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對(duì)頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點(diǎn)作,,,,,即,,;(2)如圖,過點(diǎn)作,,,,,即,,,,,;(3)如圖,過點(diǎn)作,延長至點(diǎn),,,,,平分,平分,,由(2)可知,,,又,.【點(diǎn)睛】本題考查了平行線的性質(zhì)、對(duì)頂角相等、角平分線的定義等知識(shí)點(diǎn),熟練掌握平行線的性質(zhì)是解題關(guān)鍵.7.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.8.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.9.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.10.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.三、解答題11.(1)∠A+∠C=90°;(2)①見解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過點(diǎn)B作BG∥解析:(1)∠A+∠C=90°;(2)①見解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進(jìn)而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【詳解】解:(1)如圖1,AM與BC的交點(diǎn)記作點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如圖2,過點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,∴∠C=∠CBG,∠ABD=∠C;②如圖3,過點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.12.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡便.13.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負(fù)數(shù)的性質(zhì)解決問題即可.(2)分三種情形,利用平行線的性質(zhì)構(gòu)建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行,①當(dāng)時(shí),,解得;②當(dāng)時(shí),,解得;③當(dāng)時(shí),,解得,(不合題意)綜上所述,當(dāng)t=15秒或63秒時(shí),兩燈的光束互相平行;(3)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,,,又,,而,,,即.【點(diǎn)睛】本題考查平行線的性質(zhì)和判定,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.14.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;(2)①過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.正確的作出輔助線是解題的關(guān)鍵.15.(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即解析:(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即可得到;(3)過和分別作的平行線,依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到與,之間的數(shù)量關(guān)系為.【詳解】解:(1)如圖1,過點(diǎn)作,則,由平行線的性質(zhì)可得,,又∵,,∴,故答案為:;(2)①如圖2,與,之間的數(shù)量關(guān)系為;過點(diǎn)P作PM∥FD,則PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:,②如圖,與,之間的數(shù)量關(guān)系為;理由:過作,∵,∴,∴,,∴;(3)如圖,由①可知,∠N=∠3+∠4,∵EN平分∠DEP,AN平分∠PAC,∴∠3=∠α,∠4=∠β,∴,∴與,之間的數(shù)量關(guān)系為.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.四、解答題16.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.17.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.18.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β19.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論