版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸質(zhì)量測試真題經(jīng)典套題解析一、解答題1.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關(guān)系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關(guān)系,并說明理由:應(yīng)用樂園:直接運(yùn)用上述兩個結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點(diǎn),與的角平分線相交于點(diǎn),已知,,求和的度數(shù).2.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.3.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點(diǎn)同時從點(diǎn)O出發(fā),點(diǎn)A沿直線m向左運(yùn)動,點(diǎn)B沿直線n向上運(yùn)動.(1)若∠BAO和∠ABO的平分線相交于點(diǎn)Q,在點(diǎn)A,B的運(yùn)動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補(bǔ)角的平分線,BP是∠ABO的鄰補(bǔ)角的平分線,AP、BP相交于點(diǎn)P,AQ的延長線交PB的延長線于點(diǎn)C,在點(diǎn)A,B的運(yùn)動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.4.(生活常識)射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD相交于點(diǎn)E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點(diǎn)E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫出結(jié)果)5.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動,∠BDC的角平分線交EB的延長線于點(diǎn)N,在點(diǎn)C的運(yùn)動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.6.在△ABC中,∠ABC=∠ACB,點(diǎn)D在直線BC上(不與B、C重合),點(diǎn)E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時,=.(2)若點(diǎn)D在BC邊上(點(diǎn)B、C除外)運(yùn)動(如圖1),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由;(3)若點(diǎn)D在線段BC的延長線上,點(diǎn)E在線段AC的延長線上(如圖2),其余條件不變,請直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:.(4)若點(diǎn)D在線段CB的延長線上(如圖3),點(diǎn)E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點(diǎn)E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數(shù)量關(guān)系,請直接寫出你的結(jié)論;(3)如圖3,在(2)的條件下,過P點(diǎn)作交于點(diǎn)H,連接,若平分,,求的度數(shù).8.(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線,角平分線,高是三角形的重要線段,我們知道,三角形的3條高所在直線交于同一點(diǎn).(1)①如圖1,△ABC中,∠A=90°,則△ABC的三條高所在的直線交于點(diǎn);②如圖2,△ABC中,∠BAC>90°,已知兩條高BE,AD,請你僅用一把無刻度的直尺(僅用于過任意兩點(diǎn)作直線、連接任意兩點(diǎn)、延長任意線段)畫出△ABC的第三條高.(不寫畫法,保留作圖痕跡).(綜合應(yīng)用)(2)如圖3,在△ABC中,∠ABC>∠C,AD平分∠BAC,過點(diǎn)B作BE⊥AD于點(diǎn)E.①若∠ABC=80°,∠C=30°,則∠EBD=;②請寫出∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)三角形的中線將三角形分成面積相等的兩部分,如果兩個三角形的高相同,則他們的面積比等于對應(yīng)底邊的比.如圖4,M是BC上一點(diǎn),則有.如圖5,△ABC中,M是BC上一點(diǎn)BM=BC,N是AC的中點(diǎn),若三角形ABC的面積是m請直接寫出四邊形CMDN的面積.(用含m的代數(shù)式表示)9.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC=90o+∠A,(請補(bǔ)齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?請說明理由.(應(yīng)用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點(diǎn)A在射線OP上運(yùn)動,點(diǎn)B在射線OM上運(yùn)動,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在ΔAEF中,如果有一個角是另一個角的4倍,則∠ABO=______.10.已知:直線,點(diǎn)E,F(xiàn)分別在直線AB,CD上,點(diǎn)M為兩平行線內(nèi)部一點(diǎn).(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為________;(直接寫出答案)(2)如圖2,∠MEB和∠MFD的角平分線交于點(diǎn)N,若∠EMF等于130°,求∠ENF的度數(shù);(3)如圖3,點(diǎn)G為直線CD上一點(diǎn),延長GM交直線AB于點(diǎn)Q,點(diǎn)P為MG上一點(diǎn),射線PF、EH相交于點(diǎn)H,滿足,,設(shè)∠EMF=α,求∠H的度數(shù)(用含α的代數(shù)式表示).【參考答案】一、解答題1.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點(diǎn)睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進(jìn)行合理的等量代換是解題的關(guān)鍵.2.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.3.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補(bǔ)角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點(diǎn)睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點(diǎn),同時,也是一個以靜求動的一個點(diǎn)型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.4.【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點(diǎn)睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關(guān)鍵.5.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識別圖形進(jìn)行推理是解題的關(guān)鍵.6.(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠BAD=2∠CDE.設(shè)∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結(jié)論.(3)如圖②中,結(jié)論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當(dāng)點(diǎn)E在CA的延長線上,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結(jié)論.②如圖④中,當(dāng)點(diǎn)E在AC的延長線上時,同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當(dāng)點(diǎn)E在AC的延長線上時,設(shè)∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形的外角的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.7.(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦解析:(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦法構(gòu)建方程即可解決問題;【詳解】解:(1)如圖1中,,,,.(2)結(jié)論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設(shè),.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),角平分線的定義等知識,(2)中能正確作出輔助線是解題關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題關(guān)鍵.8.(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線解析:(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①由三角形內(nèi)角和定理和角平分線的性質(zhì)可以得出∠BAE=∠BAC=35°,再由直角三角形的性質(zhì)得∠ABE=55°,即可求解;②由三角形內(nèi)角和定理和角平分線的性質(zhì)求解即可;(3)連接CD,由中線的性質(zhì)得S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,S△ABN=S△CBN=m,再求出S△CDM=S△BCD=,S△ACM=S△ABC=m,利用面積關(guān)系求解即可.【詳解】解:(1)①∵直角三角形三條高的交點(diǎn)為直角頂點(diǎn),∠A=90°,∴△ABC的三條高所在直線交于點(diǎn)A,故答案為:A;②如圖,分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案為:25°;②∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系為:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAD=90°﹣∠ABC﹣∠ACB,∴∠EBD=∠ABC+∠BAD﹣90°=∠ABC+90°﹣∠ABC﹣∠C﹣90°=∠ABC﹣∠C,∴2∠EBD=∠ABC﹣∠ACB,故答案為:2∠EBD=∠ABC﹣∠ACB;(3)連接CD,如圖所示:∵N是AC的中點(diǎn),∴,∴S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,∵△ABC的面積是m,∴S△ABN=S△CBN=m,∴S△BCD=S△ABD=m﹣a,∵BM=BC,∴,∴,,∴S△CDM=3S△BDM,S△ACM=3S△ABM,∴S△CDM=S△BCD=×(m﹣a)=,S△ACM=S△ABC=m,∵S△ACM=S四邊形CMDN+S△ADN=S△CDM+S△CDN+S△ADN,即:,解得:a=,∴S四邊形CMDN=S△CDM+S△CDN=,【點(diǎn)睛】本題主要考查了三角形的高,三角形的中線,三角形內(nèi)角和,三角形面積,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.9.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內(nèi)角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【探究2】如圖2,由三角形的外角性質(zhì)和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【應(yīng)用】延長AC與BD,設(shè)交點(diǎn)為G,如圖5,由【探究1】的結(jié)論可得∠G的度數(shù),于是可得∠GCD+∠GDC的度數(shù),然后根據(jù)角平分線的定義和角的和差可得∠1+∠2的度數(shù),再根據(jù)三角形的內(nèi)角和定理即可求出結(jié)果;【拓展】根據(jù)角平分線的定義和平角的定義可得∠EAF=90°,然后分三種情況討論:若∠EAF=4∠E,則∠E=22.5°,根據(jù)角平分線的定義和三角形的外角性質(zhì)可得∠ABO=2∠E,于是可得結(jié)果;若∠EAF=4∠F,則∠F=22.5°,由【探究2】的結(jié)論可求出∠ABO=135°,然后由三角形的外角性質(zhì)即可判斷此種情況不存在;若∠F=4∠E,則∠E=18°,然后再由第一種情況的結(jié)論∠ABO=2∠E即可求出結(jié)果,進(jìn)而可得答案.【詳解】解:【探究1】理由如下:∵BO和CO分別是∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吸油煙機(jī)制作工風(fēng)險(xiǎn)識別競賽考核試卷含答案
- 膠基糖制造工安全生產(chǎn)意識競賽考核試卷含答案
- 海藻制碘工安全生產(chǎn)知識模擬考核試卷含答案
- 2025廣東佛山禪城實(shí)驗(yàn)高級中學(xué)招聘宿舍生活老師1人考試筆試備考試題及答案解析
- 煤直接液化操作工安全宣傳考核試卷含答案
- 2026年衛(wèi)生專業(yè)技術(shù)資格考試中醫(yī)針灸學(xué)主治醫(yī)師(相關(guān)專業(yè)知識)模擬練習(xí)題及答案解析
- 2025韓國半導(dǎo)體產(chǎn)業(yè)市場現(xiàn)狀供需結(jié)構(gòu)投資機(jī)會規(guī)劃分析報(bào)告
- 2025鞋類制造和運(yùn)動品牌行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報(bào)告
- 2025鞋業(yè)行業(yè)風(fēng)險(xiǎn)投資發(fā)展分析及投資融資策略研究報(bào)告
- 版畫藝術(shù)與生態(tài)保護(hù)結(jié)合-洞察及研究
- 研磨鉆石的專業(yè)知識培訓(xùn)課件
- 2025年傳達(dá)學(xué)習(xí)醫(yī)療機(jī)構(gòu)重大事故隱患判定清單會議記錄
- 機(jī)動車檢驗(yàn)機(jī)構(gòu)管理年度評審報(bào)告
- 百度無人機(jī)基礎(chǔ)知識培訓(xùn)課件
- 2025至2030中國家用燃?xì)鈭?bào)警器市場現(xiàn)狀發(fā)展分析及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 金融行業(yè)行政管理社會調(diào)查報(bào)告范文
- 2025年中國高油玉米數(shù)據(jù)監(jiān)測報(bào)告
- 水印江南美食街招商方案
- 二零二五年度綠色生態(tài)住宅小區(qū)建設(shè)工程合同協(xié)議
- 2025-2030全球膜處理系統(tǒng)行業(yè)調(diào)研及趨勢分析報(bào)告
- 多導(dǎo)睡眠監(jiān)測課件
評論
0/150
提交評論