(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案_第1頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案_第2頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案_第3頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案_第4頁
(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

(完整版)蘇教七年級下冊期末解答題壓軸數(shù)學(xué)專題資料真題經(jīng)典套題答案一、解答題1.小明在學(xué)習(xí)過程中,對教材中的一個(gè)有趣問題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).直接寫出與的數(shù)量關(guān)系.2.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.3.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長線上一動點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請寫出正確的結(jié)論,并求出其值.4.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).5.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動點(diǎn),∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點(diǎn)G,試用含α的式子表示∠BGD的大??;(3)如圖3,延長BE交CD于點(diǎn)H,點(diǎn)F為線段EH上一動點(diǎn),∠EBM的角平分線與∠FDN的角平分線交于點(diǎn)G,探究∠BGD與∠BFD之間的數(shù)量關(guān)系,請直接寫出結(jié)論:.6.已知:∠MON=36°,OE平分∠MON,點(diǎn)A,B分別是射線OM,OE,上的動點(diǎn)(A,B不與點(diǎn)O重合),點(diǎn)D是線段OB上的動點(diǎn),連接AD并延長交射線ON于點(diǎn)C,設(shè)∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是______;②當(dāng)∠BAD=∠ABD時(shí),x=______;當(dāng)∠BAD=∠BDA時(shí),x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個(gè)相等的角?若存在,求出x的值;若不存在,請說明理由.7.如圖,,點(diǎn)在直線上,點(diǎn)在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過點(diǎn)作交的延長線于點(diǎn),作的平分線交于點(diǎn),請?jiān)趥溆脠D中補(bǔ)全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線交于點(diǎn)”改為“作射線將分為兩個(gè)部分,交于點(diǎn)”,其余條件不變,連接,若恰好平分,請直接寫出__________(用含的式子表示).8.我們將內(nèi)角互為對頂角的兩個(gè)三角形稱為“對頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對頂角,則與為對頂三角形,根據(jù)三角形內(nèi)角和定理知“對頂三角形”有如下性質(zhì):.(1)(性質(zhì)理解)如圖2,在“對頂三角形”與中,,,求證:;(2)(性質(zhì)應(yīng)用)如圖3,在中,點(diǎn)D、E分別是邊、上的點(diǎn),,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點(diǎn)P,設(shè),求的度數(shù)(用表示).9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點(diǎn),直線l2分別交直線MN、GH于C、D兩點(diǎn),且直線l1、l2交于點(diǎn)E,點(diǎn)P是直線l2上不同于C、D、E點(diǎn)的動點(diǎn).(1)如圖①,當(dāng)點(diǎn)P在線段CE上時(shí),請直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點(diǎn)P在線段DE上時(shí),(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請說明成立的理由;如果不成立,請寫出這三個(gè)角之間的數(shù)量關(guān)系,并說明理由.(3)如果點(diǎn)P在直線l2上且在C、D兩點(diǎn)外側(cè)運(yùn)動時(shí),其他條件不變,請直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為______;(2)若,直線經(jīng)過點(diǎn).①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問在旋轉(zhuǎn)過程中的度數(shù)是否會發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請說明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長線交于點(diǎn),請直接寫出與的關(guān)系(用含的代數(shù)式表示).【參考答案】一、解答題1.[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線

AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.2.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.3.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點(diǎn)睛】本題主要考查三角形的外角性質(zhì)和角平分線的定義的運(yùn)用,根據(jù)推導(dǎo)過程對題目的結(jié)果進(jìn)行規(guī)律總結(jié)對解題比較重要.4.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.5.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°,從而根據(jù)∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點(diǎn)G作GP∥AB,根據(jù)AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據(jù)∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點(diǎn)F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據(jù)BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過點(diǎn)G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過點(diǎn)F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)與判定,角平分線的性質(zhì)和三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.6.(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【分析】(1)運(yùn)用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)解析:(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【分析】(1)運(yùn)用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當(dāng)∠BAD=∠ABD時(shí),∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當(dāng)∠BAD=∠BDA時(shí),∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個(gè)相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【點(diǎn)睛】本題考查了三角形的內(nèi)角和定理和三角形的外角性質(zhì)的應(yīng)用,三角形的內(nèi)角和等于180°,三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和.利用角平分線的性質(zhì)求出∠ABO的度數(shù)是關(guān)鍵,注意分類討論思想的運(yùn)用.7.(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情解析:(1);(2)畫圖見解析,,證明見解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測,根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過等量代換求解;(3)分兩種情況進(jìn)行討論,即當(dāng)與,充分利用平行線的性質(zhì)、角平分線的性質(zhì)、等量代換的思想進(jìn)行求解.【詳解】(1)過點(diǎn)作,,,,.(2)根據(jù)題意,補(bǔ)全圖形如下:猜測,由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線、三角形內(nèi)角和定理、垂直等相關(guān)知識點(diǎn),解題的關(guān)鍵是掌握相關(guān)知識點(diǎn),作出適當(dāng)?shù)妮o助線,通過分類討論及等量代換進(jìn)行求解.8.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結(jié)合∠CEP+∠ACD=∠CDP+∠P,即可得到結(jié)論.【詳解】(1)證明:∵在“對頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設(shè)=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線,∴設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線和相交于點(diǎn)P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點(diǎn)睛】本題主要考查角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì),熟練掌握“對頂三角形”的性質(zhì),是解題的關(guān)鍵.9.(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案為:∠APB=∠NAP+∠HBP;(2)如圖②,過P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如備用圖,∵M(jìn)N∥GH,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論