數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案_第1頁
數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案_第2頁
數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案_第3頁
數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案_第4頁
數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

數(shù)學蘇教七年級下冊期末解答題壓軸綜合測試試卷經(jīng)典答案一、解答題1.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.2.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點H,點F為線段EH上一動點,∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點G,試用含α的式子表示∠BGD的大??;(3)如圖3,延長BE交CD于點H,點F為線段EH上一動點,∠EBM的角平分線與∠FDN的角平分線交于點G,探究∠BGD與∠BFD之間的數(shù)量關系,請直接寫出結論:.3.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.4.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內一點,連接,,試探究與,,之間的關系.小明:可以用三角形內角和定理去解決.小麗:用外角的相關結論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質)∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).5.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).6.我們將內角互為對頂角的兩個三角形稱為“對頂三角形.例如,在圖1中,的內角與的內角互為對頂角,則與為對頂三角形,根據(jù)三角形內角和定理知“對頂三角形”有如下性質:.(1)(性質理解)如圖2,在“對頂三角形”與中,,,求證:;(2)(性質應用)如圖3,在中,點D、E分別是邊、上的點,,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點P,設,求的度數(shù)(用表示).7.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.8.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點,若,試探求與的數(shù)量關系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點,當點在線段的延長線上從左向右移動的過程中,直接寫出與所有可能的數(shù)量關系.9.(想一想)在三角形的三條重要線段(高、中線、角平分線)中,能把三角形面積平分的是三角形的______;(比一比)如圖,已知,點、在直線上,點、在直線上,連接、、、,與相交于點,則的面積_______的面積;(填“>”“<”或“=”)(用一用)如圖所示,學校種植園有一塊四邊形試驗田STPQ.現(xiàn)準備過點修一條筆直的小路(小路面積忽略不計),將試驗田分成面積相等的兩部分,安排“拾穗班”、“鋤禾班”兩班種植蔬菜,進行勞動實踐,王老師提醒同學們先把四邊形轉化為同面積的三角形,再把三角形的面積二等分即可.請你在下圖中畫出小路,并保留作圖痕跡.10.已知E、D分別在的邊、上,C為平面內一點,、分別是、的平分線.(1)如圖1,若點C在上,且,求證:;(2)如圖2,若點C在的內部,且,請猜想、、之間的數(shù)量關系,并證明;(3)若點C在的外部,且,請根據(jù)圖3、圖4直接寫出結果出、、之間的數(shù)量關系.【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設∠AOB=x,根據(jù)兩直線平行,內錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和表示出∠OEC,然后利用三角形的內角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點睛】本題主要考查了平行線、角平分線的性質以及三角形內角和定理,熟記各性質并準確識圖理清圖中各角度之間的關系是解題的關鍵.2.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質∠ABD+∠BDC=180°,從而根據(jù)∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點G作GP∥AB,根據(jù)AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據(jù)∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據(jù)BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過點G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過點F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點睛】本題主要考查了平行線的性質與判定,角平分線的性質和三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.3.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據(jù)平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.4.(1)三角形內角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質求解,就需要構造外解析:(1)三角形內角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質求解,就需要構造外角,因此延長交于,然后根據(jù)外角的性質確定,,即可判斷與,,之間的關系;(3)①連接BC,然后根據(jù)(1)中結論,代入已知條件即可求解;②連接BC,然后根據(jù)(1)中結論,求得的和,進而得到的和,然后根據(jù)角平分線求得的和,進而求得,然后利用三角形內角和定理,即可求解;③連接BC,首先求得,然后根據(jù)十等分線和三角形內角和的性質得到,然后得到的和,最后根據(jù)(1)中結論即可求解;④設與的交點為點,首先利用根據(jù)外角的性質將用兩種形式表示出來,然后得到,然后根據(jù)角平分線的性質,移項整理即可判斷;⑤根據(jù)(1)問結論,得到的和,然后根據(jù)角平分線的性質得到的和,然后利用三角形內角和性質即可求解.【詳解】(1)∵,(三角形內角和180°)∴,(等式性質)∵,∴,∴.(等量代換)故答案為:三角形內角和180°;等量代換.(2)如圖,延長交于,由三角形外角性質可知,,,∴.(3)①如圖①所示,連接BC,,根據(jù)(1)中結論,得,∴,∴;②如圖②所示,連接BC,,根據(jù)(1)中結論,得,∴,∵與的角平分線交于點,∴,,∴,∵,,∴,∴,∵,∴;③如圖③所示,連接BC,,根據(jù)(1)中結論,得,∵,,∴,∵與的十等分線交于點,∴,,∴,∴,∵,∴,∴,∴,∴;④如圖④所示,設與的交點為點,∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分線交于點,∴,∴.【點睛】本題考查了三角形內角和定量,外角的性質,以及輔助線的做法,重點是觀察題干中的解題思路,然后注意角平分線的性質,逐漸推到即可求解.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得出結論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數(shù)為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質,三角形的內角和定理,角的和差的計算,求出是解本題的關鍵.6.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質得,從而得,進而即可得到結論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質得,從而得,進而即可得到結論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內角和定理,列出方程,即可求解;(3)設∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結合∠CEP+∠ACD=∠CDP+∠P,即可得到結論.【詳解】(1)證明:∵在“對頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線,∴設∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線和相交于點P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點睛】本題主要考查角平分線的定義,三角形內角和定理,三角形外角的性質,熟練掌握“對頂三角形”的性質,是解題的關鍵.7.(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見解析;(3)54°【分析】(1)根據(jù)四邊形內角和計算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出∠EDB+∠FBD=180°,可得結論;(3)根據(jù)五等分得到∠CDP+∠CBP=36°,連接PC并延長,證明∠DCB=∠DPB+∠CBP+∠CDP,即可計算.【詳解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如圖,連接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=∠MBC,∠CDE=∠CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF;(3)∵∠MBC+∠CDN=180°,∴∠CDP+∠CBP=(∠MBC+∠CDN)=36°,連接PC并延長,∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP,∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP,∴∠DPB=90°-36°=54°.【點睛】本題考查多邊形內角和與外角,三角形內角和定理,平行線的判定等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.8.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質即可求得∠M的值.(2)延長BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質即可求得∠M的值.(2)延長BA,DC交于E,應用四邊形的內角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長BA、DC使之相交于點E,延長MC與BA的延長線相交于點F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內外角之間的關系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點睛】本題考查了平行線的性質.解答該題時,通過作輔助線準確作出輔助線l∥AB,利用平行線的性質(兩直線平行內錯角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關系聯(lián)系起來,從而求得∠M的度數(shù).9.想一想:中線;比一比:=;用一用:見解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用解析:想一想:中線;比一比:=;用一用:見解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用“想一想”中的中線和“比一比”的平行線進行面積的二等分.【詳解】想一想:三角形中線把三角形底邊等分成兩份,過頂點向底邊作垂線,高相同,故能把三角形面積平分的是三角形的中線.比一比:∵∴兩平行線之間的距離相等,即A到BC的距離=D到BC的距離又∵和共底邊BC∴和同底,等高,面積相等.用一用:如圖所示,連接SP,過Q點作QM∥SP,延長TP,交QM與點M,連接SP,取TM的中點N.SN即為所求筆直的小路.證明:∵QM∥SP∴∵TM的中點N∴∴【點睛】本題考查中線和平行線的距離.連接三角形的一個頂點和它所對的邊的中點的線段叫做三角形的中線.兩條平行線的距離處處相等.10.(1)證明見解析;(2)∠CDB+∠AEC=2∠DCE;(3)圖3中∠CDB=∠AEC+2∠DCE,圖4中∠AEC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論