版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
、
AIinhumanresourcemanagement
ThelimitsofempiricismAuthors
/
JanineBerg,Hannah
Johnston ILO
WorkingPaper154November
/2025Attribution4.0
International(CCBY4.0)Thiswork
is
licensed
underthe
Creative
CommonsAttribution4.0International.See:
https://
creativecommons.org/licenses/by/4.0/.The
user
is
allowed
to
reuse,share(copy
and
redistrib-
ute),adapt(remix,transformandbuildupontheoriginalwork)
as
detailed
inthe
licence.The
usermustclearlycredit
the
ILO
as
the
sourceof
thematerial
andindicate
if
changes
weremade
totheoriginalcontent.Useof
theemblem,nameandlogo
of
theILO
is
not
permitted
in
con-
nection
with
translations,adaptationsorotherderivative
works.Attribution–Theusermustindicateifchangesweremadeandmustcitetheworkasfollows:
Berg,J.,Johnston,
H.AI
inhuman
resource
management:The
limits
of
empiricism.
ILO
Working
Paper154.Geneva:InternationalLabourOffice,2025.?ILO.Translations
–In
case
ofatranslation
ofthiswork,the
following
disclaimer
must
be
added
alongwiththeattribution:Thisisatranslation
of
a
copyrighted
work
of
theInternational
Labour
Organization
(ILO).This
translation
has
not
been
prepared,
reviewed
or
endorsed
by
the
ILO
and
should
not
beconsidered
anofficial
ILOtranslation.The
ILOdisclaimsall
responsibility
for
itscontent
and
ac-
curacy.Responsibility
restssolelywiththeauthor(s)ofthetranslation.Adaptations
–Incaseofanadaptationofthiswork,thefollowingdisclaimermust
be
added
alongwiththeattribution:Thisisanadaptationofacopyrightedworkofthe
InternationalLabour
Organization
(ILO).This
adaptation
has
not
been
prepared,
reviewed
or
endorsed
by
the
ILO
and
should
not
beconsidered
anofficial
ILOadaptation.The
ILOdisclaimsall
responsibility
for
itscontent
and
ac-
curacy.Responsibility
restssolelywiththeauthor(s)oftheadaptation.Third-partymaterials
–
This
Creative
Commons
licence
does
not
apply
to
non-ILO
copyright
ma-
terialsincludedinthispublication.If
thematerialisattributedtoathirdparty,theuserofsuch
materialissolelyresponsible
forclearing
therights
with
therightsholderand
foranyclaimsof
infringement.Any
dispute
arising
under
this
licence
that
cannot
be
settled
amicably
shall
be
referred
toarbitra-
tionin
accordance
with
the
ArbitrationRules
of
theUnitedNations
Commission
on
International
TradeLaw
(UNCITRAL).
Thepartiesshallbeboundby
any
arbitration
awardrendered
as
aresult
of
sucharbitrationas
the
finaladjudicationof
suchadispute.Fordetailsonrightsandlicensing,contact:rights@.
Fordetailson
ILO
publications
anddigitalproducts,
visit:
www.ilo.org/publns.ISBN
9789220428610
(print),
ISBN
9789220428627
(webPDF),
ISBN
9789220428634
(epub),
ISBN
9789220428641(html).ISSN2708-3438(print),ISSN2708-3446(digital)/10.54394/NMSH7611The
designations
employed
inILO
publications,whichare
in
conformitywith
United
Nations
practice,andthe
presentationofmaterialthereindo
notimply
the
expression
ofany
opinion
whatsoeveronthepartof
theILOconcerningthelegalstatusofanycountry,areaorterritory?InternationalLabourOrganization2025orofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.See:www.ilo.
org/disclaimer.Theopinionsand
viewsexpressedin
thispublicationare
thoseof
theauthor(s)anddonotnec-
essarilyreflect
theopinions,
viewsorpoliciesof
theILO.Referencetonamesof
firmsandcommercialproductsandprocessesdoesnotimplytheiren-
dorsementby
theILO,andany
failure
tomentionaparticular
firm,commercialproductorpro-
cessisnotasignof
disapproval.Information
on
ILO
publications
and
digital
products
can
befound
at:/research-
and-publicationsILOWorking
PaperssummarizetheresultsofILOresearchinprogress,
and
seekto
stimulate
discussion
of
a
range
of
issues
related
to
the
world
of
work.
Comments
on
this
ILO
WorkingPaper
are
welcomeandcanbesent
to
berg@.Authorization
forpublication:CarolineFredrickson,Director,ResearchDepartmentILO
WorkingPaperscanbe
foundat:
www.ilo.org/research-and-publications/working-papersSuggested
citation:Berg,
J.,
Johnston,
H.2025.
AIinhumanresourcemanagement:
The
limits
of
empiricism,ILOWorkingPaper154(Geneva,ILO).
/10.54394/NMSH7611Therapidintegrationofartificialintelligence(AI)into
Human
Resource
Management(HRM)
is
transforminghoworganizationsrecruit,manage,andevaluatetheirworkforces.Whilepropo-
nentschampionAIasameanstoenhanceefficiency,reducebias,andalign
HR
practiceswith
strategic
business
goals,
this
paper
argues
that
such
optimism
is
misplaced.Drawing
on
a
critical
review
of
AI's
application
across
four
coreHRM
functions—recruitment,
compensation,
schedul-
ing,andperformancemanagement—thispaperidentifiessignificantrisksandlimitationsaris-
ing
from
the
fundamentalstructureof
AIsystems.Central
to
the
analysisis
a
three-parameter
framework
for
assessing
AI
tools:
theirobjective,
the
datatheyrelyupon,andhow
theyare
programmed.
Thepapershows
thatacrossHR
functions,
AIsystemsfrequentlyoperationalizereductiveorpoorlyalignedobjectives,relyonlow-quality
orbiaseddata,
and
areprogrammedinnon-transparent
ways
thatundermine
theirusefulness.
Thesestructuralshortcomingsnotonlyunderminetheeffectivenessof
AIsystemsbutalsoin-
troducelegal,ethical,andpracticalrisks
for
firmsand
their
workers.Keywords:
artificial
intelligence,
human
resource
management,
data
analytics,
algorithmic
man-
agementAbouttheauthorsJanineBergis
SeniorEconomist
andHead
of
theEffective
Labour
Institutions
Unit
in
the
Research
Department
of
the
ILO.
Since
joining
the
ILO
in
2002,
she
has
conducted
research
on
the
econom-
icandsocialeffectsoflabourlawsaswellasprovidedtechnicalassistanceonpoliciesforgen-
erating
jobsandimproving
workingconditions.
Sheis
theauthorof
severalbooksandnumer-
ousarticlesonemployment,labourmarketinstitutionsand
thedigital
transformationof
work.HannahJohnston
isanAssistant
Professor
intheSchoolofHuman
Resources
Management
at
YorkUniversityinToronto,Canada,specializingonthedigitalizationof
work.Priorto
joining
York,HannahwasapostdoctoralfellowatNortheasternUniversityinBostonandalsoworked
professionallyat
theInternationalLabourOrganization.Hannahhasalongstandinginterestin
theplatform
economy
andis
a
collaborator
with
OxfordUniversity’sFairworkProject.Her
recent
publications
canbe
foundin
journalsincluding
Industrial
andLaborRelationsReview,
Work
and
Occupations,and
theInternationalLabourReview.01
ILOWorkingPaper
154AbstractAbstract01Abouttheauthors01、Introduction04、
1Howdidwegethere?Theriseof
“peopleanalytics”andmanagingwork-
ersthroughdata05、
2TheworkingsofAIsystems:Objective,dataandprogramming
RecruitmentSourcingScreening,InterviewingandSelectionCompensationSchedulingworkPerformancemanagement08091011131619、
3AIinHRM:
Unbridled
optimism23、
4WhatisanHR
managertodowithAI?26、Conclusion28References
29Acknowledgements
36Tableofcontents02
ILOWorkingPaper
154Figure1.McKinsey
infographic
on
the
benefits
of
people
analytics
06Figure2.The
workings
of
AI
systems
09ListofFigures03
ILOWorkingPaper154Motivated
byadesireto
moreefficientlyand
effectively
manage
people
in
organizations,
HR
managersareusing
theprogrammingandanalytical
capacities
of
AI
to
fulfillkeyHR
functions
–
includingselectionandrecruitmentofpersonnel,compensationdeterminationandstructure,
performancereviewandevaluation,and
theorganizationof
working
time.Largely
absent
from
therush
tointegrate
AI,however,hasbeen
a
comprehensive
assessment
of
whether,
and
under
what
circumstances,
AI
is
useful
for
themanagement
of
people
within
organizations.
Yet
despite
thelackofassessment,the
‘AIforHR’
industryandtheadoptionof
thesetoolsandsystemsby
individual
firmsandorganizationsisburgeoning.Thispaperpresentsaframeworkforunderstandingandevaluatingthepotentialbenefitsand
possiblerisksorharmspresentedby
AI
systemsin
workforcemanagement.Following
a
section
of
the
paper
documenting
the
historical
context
of
theHumanResources
field
that
has
given
rise,
first
topeople
analytics
and
then
to
AI,
thepaperpresents
a
frameworkbasedon
threeinter-re-
lated
parameters
that
can
help
assess
the
quality,
legality,
and
suitability
of
AI
systems
used
in
the
field.
These
are:
(1)
the
system
objective,
(2)
the
dataitisbuilt
on
andrelies
on,
and
(3)
howtheAI
systemisprogrammed.Drawing
on
existingliterature
abouthow
AIisbeingused
for
workforce
management,
thepaperapplies
the
three-parameter
framework
tomap
thecontoursof
AIuse
relative
to
fourkeyHumanResourceManagement
functions
where
adoption
of
AI
technologies
hasbeenprominent:recruitment,compensation,scheduling,andperformancemanagement.
Ourdiscussionsection,
“Unbridledoptimism”
views
thedisciplinaryandoccupationalhistoryof
HR
alongside
the
findingsonHR’semergentuseof
AI.
We
argue
that
thesearch
for
occupation-
allegitimacyby
HRprofessionalshasfostered
a
preoccupationwith
numeracy
and
positivism
that
has
providedfertilegroundforthe
‘evidence-basedsolutions’
thatAIsystems
purportto
offer.Thistendencytowardspositivism,wecontend,islikelytoresult
inwidespread
adoption
of
AIundercircumstancesthatcreaterisksforworkers,liabilitiesforfirms,andcostsforsocie-
ty.Giventheseeminglyinevitabletransformationof
workduetoAI,wearguefortheneedfor
HRprofessionals
toimprove
theirunderstandingof
the
workingsofAIsystemsso
that
they
can
better
judge
theirpotentialandlimitations,and
that
thisisbestachieved
when
theyparticipate
in
thedesignof
systems
thatareimplementedin
their
workplaces.、
Introduction04
ILOWorkingPaper154HumanResourceManagement
emerged
in
the1950s
as
a
distinct
field
of
study
and
practice
con-
cerned
with
themanagement
of
people
in
organizations.
Carved
out
from
thebroader
discipline
of
IndustrialRelations,
whichhashistoricallyexaminedlabourrelationsin
thecontextof
unions
andcollectivebargainingorcollectiveemploymentrelationsHumanResourceManagement
ismostassociatedwithanemployer
srelationswithindividualemployees(Kaufman2001).As
practitioners,HRmanagers
are
typically
engagedin
facilitating
arange
of
personnel
functions
includingrecruitment
and
selection,
compensation,
scheduling
andperformancemanagement
andpromotiontoachieve
theorganizationsgoals.Since
the
1980s,
the
dominant
paradigm
guidingHR
managers
has
beenstrategicHRM
(Paauwe
andBoon
2018).Building
onHR’s
originsand
the
foundational
concept
of
scientific
management,
strategic
HRMaimsto
link
firm
performance
to
the
specific
methods
and
practices
deployed
within
the
firm
to
manage
their
workers.
When
first
introduced,
this
approach
represented
a
significant
shift
infirmmanagement.Prior
to
this
shift,
organizational‘strategy’
referred
to
a
firm’sperspec-
tiveor
‘worldview’,itsintendedplanandpatternedbehaviour,as
wellasa
firm’suse
of
ploys
to
outwitcompetitors(Mintzberg1987).However,in
the1980s
firmstrategybegan
to
focusmore
oncausality,withresearchers
andpractitioners
attempting
toidentifyinputs
(e.g.management
practices)
and
outputs
(e.g.marketperformance),
quantify
them,
and
derive
causal
connections
betweenthetwo.Operationalizingthisstrategicapproach,as
many
have
argued,
has
largely
been“gearedtowardsspecificnumericaltargets”
(WoodandKispál-Vitai2017).Firmsseeknot
only
to
derive
general
conclusions
or
trends
through
quantification,but
also
to
compare
arange
of
strategies
for
thepurposeof
distinguishingasingular
bestpractice
.This
epistemological
shift
has
fueled
the
development
of
new
metricsand
datapoints
that
can
be
used
to
analyze
the
relationship
between
workforce
management
and
firm
performance.
In
turn,
HRmanagerscanusethesenewsourcesofdataabouttheworkforcetoinformdecision-mak-
ing.ThistypeofEvidence-Based
Managementtechnique(EBM)hasbeenlargely
promoted
in
strategicHRMtohelpovercomepitfalls,suchasrelyingonpersonalexperienceormanagerial
whims,orthetendencytomimicthestrategiesorapproachesoftopperformers(Pfefferand
Sutton2006;Rousseau2006);Reay,Berta,andKohn2009).Theresulthas
beenavastarsenal
ofdigitallyenabledworkplaceandwork-relatedtoolsthatcapture,collectandanalyzeworker
behavior
andperformancedata.
Since
the1980s,
thishasdriven
thegrowing
field
of
people
an-
alytics–definedas
“theuseofmeasurementandanalysistechniquestounderstandandopti-
mizethepeoplesideofbusiness(EnderesandShannon2019)andultimatelyhas
pavedthe
path
towards
theadoptionof
AI
forHRM.Withinthefieldofpeopleanalyticsandthedevelopmentof
AI,moredataandbetterdataare
commonly
viewed
as
precursors
for
robust
and
powerful
systems.People
analytics
data
may
per-
taintoworkers’
demographics,descriptiveinformationaboutthelocationornatureof
the
job,
performance,trainingorprofessionalhistory,ortenure.Whileeveryorganizationhasdataon
its
workforce,advancedanalysis
for
workforceoptimizationandplanningcanonlybeachieved
when
data
are
high
quality,
robust
and
plentiful,
and
when
organizations
have
adequately
trained
staff
toprocess
andmake
sense
of
them.Figure1is
aninfographic
from
aMcKinseypublication
on
the
virtue
of
people
analytics,
stressing
that
the
power
of
such
systems
to
provide
workforce
insightsincreases
with
the
volumeandqualityof
workforcedata(Ledetetal.2020).、
1Howdidwegethere?Theriseof
“peopleanalytics”
andmanagingworkersthroughdata05
ILOWorkingPaper154Source:(Ledetetal.
2020).Whenfirst
introduced,
HR
professionals
used
peopleanalyticstoassess
patternsabouttheir
workforce,informing
a
widerange
of
HR
functionsincludingrecruitment
and
hiring,
promotion,
compensation,andhealthandsafety(Giermindletal.2022).
Withmore
andhigher-quality
“big
data”and
increases
incomputing
power,
peopleanalytics
is
being
propelledfromcorrelation
analysisintotheworldofpattern-based
prediction,and
Human
Resource
professionals,once
responsible
forexecutinga
widerangeof
functions,are,insomeinstances,relinquishing
these
responsibilitiestoalgorithmsandAI.Thisdecades-longstrategicshiftprovidescriticalcontext
forunderstandingwhythefieldofHRMhasembracedtheuseof
AI;theparticularharmsthat
mayemerge
from
theuseof
AI;and
why
the
fieldofHRislargelyblind
to
them.AI
is
distinguished
by
vast
quantities
of
data
and
rapid
quantitative
analysis.
These
new
sources
of
data
have
held
particular
appeal
toa
profession
that
has
oriented
itself
towardsEBM.
Additionally,
AI
is
popularly
portrayed
as
innovative
and
cutting
edge,
and
the
use
of
AI
technologies
and
tools
isthusseenasawaytoelevatetheHRprofession.Thismotivationisalsounderpinned
by
im-
portantcontextashistoricallymanyhavetendedtoregardHRprofessionalsas
administrative
functionaries,
who–lackingpower–areengagedinmerebureaucratic
service
delivery
without
addinganyreal
value
to
theorganization(Wright2008;Legge1978).Although
thestrategic
focusofHRMin
the1980s(along
withother
activitiessuch
as
the
forma-
tion
of
professional
associations
and
educational
and
training
courses)provided
one
avenue
for
theoccupation
torecastitself
onequal
footing
withothermanagerialprofessions(Legge1978;
Cayrat
andBoxall
2023),criticsmaintain
that
the
fieldhas
stillnotprovidedevidence
of
its
worth
(Wright2008;
Alvesson2008;Kryscynskietal.2018;CayratandBoxall2023;Hammonds2005).
Thus,thispersistentquestforoccupationallegitimacypresentsanotherimportantmotivation
forHR’sembraceof
people
analytics
and
AI:byembracingevidence-basedmanagement
(EBM),、
Figure1.
McKinseyinfographiconthebenefitsofpeopleanalytics06
ILOWorkingPaper154andthedataaccumulatinganddata-intensivetoolsandtechnologies
that
facilitateit,HRprac-
titionersmightprovideevidenceof
their
value
to
the
firm.Thisapproach,however,hasnotbeen
withoutcriticism.Scholarsargue
that
whileempiricalre-
searchlinkingHRpractices
toorganizationalperformancecanat
timesdemonstrateaclearas-
sociation,therelationshipbetweenthese
variablesisunder-theorized(FleetwoodandHesketh
2008).Theempiricalapproachof
HR
scholars
has
proven
adequatefor
generating
predictive
dimensionsoftheory
rooted
in
priorobservationsof
‘what’is
happeningand
‘how’;
however,
robusttheories
shouldalso
be
capable
ofexplainingthe
mechanismsand
reasoning
behind
themechanismsandcausalrelationships(Guest2025;FleetwoodandHesketh2008).Itiswith
respecttothislatterexplanatorydimensionthatHRMtheoryhasfallenshort.Withoutanade-
quateorclearlyarticulatedtheory,researchwill“alsolackanadequaterationaleforthechoice
ofphenomenathatwilleventuallybecomethevariables”usedtodrivefuturepredictivetheo-
rization(ibid);127).Undertheseconditions,ratherthanexplainingwhyorganizationssucceed
or
failand
whatothersystemicconditionsordiscretepracticesmaycontribute
to
thisoutcome
(Guest2025),HRmanagersandresearchersalike
areprone
toreplicatepast
practice
simply
be-
causesuchpracticeshavebeenpreviouslyexamined.HRtheories,inturn,remainpoorlyartic-
ulatedandlackconceptualclarity(Boonetal.2019).Thisriskof
‘measurementwithouttheory’
isamplifiedinthecontextof
AI,
whichbydefinitionisnotaboutbuildinganexplicittheory,but
ratheraboutbuildingpatterns
throughbigdata(ElragalandKlischewski2017).Proponentsof
AIintegration,includingmanyglobalconsulting
firms,promiseexactly
this:
add-
edvaluefromtheuseoftheirnewlydevelopedtechnologiesandtools–and
specifically,that
thepredictivecapacityof
AI
willhelp
toreveal
therecipe
foraneffective
allocation
of
humanre-
sources.
Companies
arerapidly
obliging.
ISG,
an
organizational
changemanagement
company,
foundin2023
thatoneoutof
every
threeorganizations
wasprioritizing
AI
and
analyticsin
their
HRandtechnologystrategy.Thisfindingwasbasedonasurveyofenterpriseleadersatfirms
employingbetween5,000and50,000workers.Asthereportexplained,
“l(fā)eadingHRtechnolo-
gyproviders,suchassuchasOracle,
[IBM],SAP
SuccessFactors
andWorkday,
arefocused
on
embeddingAI,machinelearningandanalyticsinthecoreplatform”(ISG2023).Indeed,
most
of
thesoftwareisprovidedthroughthird-partiesandistypicallyanadd-ontootherservicesal-
readyprovided.ThisfacilitatestheworkofHRprofessionalswhooftenlackadequatetraining
in
whatkindsof
analyticalquestions
toaskorhow
tointerpretquantitative
findings(Giermindl
etal.2022;Kryscynskietal.2018).Yetdespitehighratesof
technologicalintegration,including
AI,
thesame
ISG
survey
found
that
less
than
half
of
organizations
surveyed
realized
business
value
from
their
investments.
What
has
emergedis
thus
aparadox:
although
trovesof
data
anddevelopmentsin
the
fieldof
AIpromise
toprovideHRprofessionalswiththenecessarydata
and
analysisto
helpthemeffectively
and
efficientlyallocatehumanresources,thesetechnologieshavenotyetdeliveredmuchvalueto
firmsandorganizations.Whynot?Whatdoestheactualevidenceontheimplementationof
AI
inHRMbear?Does
thedesignof
these
AIsystemsallow
them
todeliveraspromised?07
ILOWorkingPaper
154本報(bào)告來(lái)源于三個(gè)皮匠報(bào)告站(),由用戶(hù)Id:349461下載,文檔Id:988493,下載日期:2025-12-13Toassesshoweffective
AIhasbeenforrealizingtheoverarchinggoalsofHR,itisnecessaryto
delineatewhatthesegoalsare,andtounpacktheworkingsofAIsystem
tobetterunderstand
potentialpitfalls.
AIsystemsarecomposed
of
threeinter-relatedparameters:
(1)
the
system
ob-
jective,(2)thedataitisbuiltonandrelieson,and(3)howit
is
programmed(Seefigure2).The
quality
of
each
of
theseparameters
differentiates
systems
that
work
well
from
those
that
donot.Beginningwiththesystemobjective,whiledefiningsuchanaimmayappearstraightforward,
how
theseaimsareoperationalizedismorecomplicated.
When
AIsystemsare
developed
with
neutralaims–suchasdeterminingtheshortestroutebetweenlocations–
it
is
easyto
relyon
identifiableandrelevantvariablesandthefindingsareeasytointerpret.
But
most
human
re-
source
functionsinvolve
the
“fleshy,messy,indeterminatestuff
of
everydaylife”–stuff
thatare
difficult
to
capture
in
a
discrete
variable
(Katz
2001).
This
can,
as
described
by
Sandy
Gould
(Gould
2024),
create
practical
challenges,
which
she
explains
asthe
need
to,
“accept
resource
constraints
onwhatismeasured,aswellastheontologicallimitations(somethingsarenevergoingtobe
open
to
‘direct’
measurementbyanyconceivablemeans)”
(106).Data,meanwhile,
are
anecessaryinput
to
AI
systems.Limitationsin
datahave
been
the
focus
of
muchcritique,
with
twoparticularlysalientconcerns.First,
thereis
thequestionof
dataquality.
AIsystemsrelyon
trainingdata
to‘learn’
theconnections
andpatterns
thatprovide
the
founda-
tionuponwhichdecisionsaremade(Whangetal.2023).Whenthesedataarepoorquality,AI
systems
yieldpoor
quality
outputs.
Asthe
saying
goes:‘garbagein,
garbage
out’.
A
secondissue
concerns
the
suitability
of
the
data.
Inbespoke
AI
systems
that
are
developedinternallyby
or
for
asingular
firm,
trainingdatamaybeinternal
to
the
firmandconsistofpastoperations(Kresge
2020).
When
systems
are
developed
for‘off
the
shelf’
use,
they
rely
on
more
generalized
datasets
that
can
either
be
purchased
via
a
growing
data
market
(Zuboff
2019)
or
otherwise
compiled
from
availabledata
thataredeemed
toberelevantsources
for
thesystem
(Muldoonet
al.
2023).
The
appropriateness
of
more
generalized
datasets
ought
to
be
evaluated
on
a
case-by-case
basis
but
rarelyis.Equally,whenissuesstemmingfromnon-representativedataarise,acommonlysug-
gestedsolutionisthatmoredataormorerepresentativedataareneeded.However,thesetypes
ofproblemsalsoraisequestionsabout
thesuitabilityof
thedata
tomeet
thestatedobjective.Thosecautiousof
AIhavealsopointedtothepotentialproblemsassociatedwiththethirdpa-
rameter:programming.
Algorithms
are
akeydecision-making
feature
atthecoreof
AI
systems.
They
can
be
defined,
intheir
most
basicsense,asa
set
of
rules
executedthrough
computer
programmingcodewithaparticularaimorobjective.
Algorithmsfunctionwith
variedlevelsof
autonomyandhumaninvolvement;thesecharacteristicsarealso
determined
bytheir
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職智能網(wǎng)聯(lián)汽車(chē)技術(shù)(智能網(wǎng)聯(lián)技術(shù))試題及答案
- 2025年中職車(chē)輛維修(機(jī)油更換與保養(yǎng))試題及答案
- 2025年高職火電廠熱力設(shè)備運(yùn)行與檢修(熱力設(shè)備維護(hù))試題及答案
- 2025年高職(現(xiàn)代農(nóng)業(yè)技術(shù))生態(tài)種植模式階段測(cè)試題及答案
- 2026年中職第二學(xué)年(電子商務(wù)基礎(chǔ))網(wǎng)絡(luò)營(yíng)銷(xiāo)實(shí)務(wù)階段測(cè)試題及答案
- 2025年大學(xué)本科(機(jī)器人工程)機(jī)器人系統(tǒng)設(shè)計(jì)試題及答案
- 2025年高職空中乘務(wù)(客艙服務(wù))試題及答案
- 2025年高職新能源汽車(chē)制造與檢測(cè)(電機(jī)性能優(yōu)化)試題及答案
- 2026年廣西單招財(cái)經(jīng)商貿(mào)類(lèi)考前10天沖刺卷含答案
- 2026年河北單招文化素質(zhì)語(yǔ)文作文高分模板素材題庫(kù)含答案含經(jīng)典題例文
- 《做酸奶》課件教學(xué)課件
- 2025西部機(jī)場(chǎng)集團(tuán)航空物流有限公司招聘考試筆試備考試題及答案解析
- 《教育心理學(xué)》期末重點(diǎn)鞏固專(zhuān)練題庫(kù)(附答案)
- 2025年秋人教版(新教材)初中數(shù)學(xué)七年級(jí)上冊(cè)期末綜合測(cè)試卷及答案
- 施工升降機(jī)操作培訓(xùn)試題及答案
- 企業(yè)檔案基礎(chǔ)知識(shí)課件
- 醫(yī)院購(gòu)買(mǎi)物業(yè) 保潔服務(wù)項(xiàng)目方案投標(biāo)文件(技術(shù)方案)
- 設(shè)備技術(shù)員年終工作總結(jié)
- 智慧樹(shù)知道網(wǎng)課《生物統(tǒng)計(jì)學(xué)(海南大學(xué))》課后章節(jié)測(cè)試答案
- 瀝青拌合站模塊化設(shè)計(jì)與建設(shè)技術(shù)路線
- 出血性中風(fēng)課件
評(píng)論
0/150
提交評(píng)論