版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省商洛市2026屆數(shù)學(xué)高一上期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是()A. B.C. D.2.已知函數(shù)則等于()A.-2 B.0C.1 D.23.已知全集,集合,那么()A. B.C. D.4.已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調(diào)遞增.若實數(shù)a滿足,則a的取值范圍是A. B.C. D.5.已知,,,則()A. B.C. D.6.若一束光線從點射入,經(jīng)直線反射到直線上的點,再經(jīng)直線反射后經(jīng)過點,則點的坐標(biāo)為()A. B.C. D.7.已知函數(shù)則值域為()A. B.C. D.8.已知函數(shù)是定義在R上的偶函數(shù),且在上是單調(diào)遞減的,設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.9.已知函數(shù)f(x)=,若f(f(-1))=6,則實數(shù)a的值為()A.1 B.C.2 D.410.函數(shù),則f(log23)=()A.3 B.6C.12 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.已知=,則=_____.12.設(shè)函數(shù)的定義域為D,若存在實數(shù),使得對于任意,都有,則稱為“T—單調(diào)增函數(shù)”對于“T—單調(diào)增函數(shù)”,有以下四個結(jié)論:①“T—單調(diào)增函數(shù)”一定在D上單調(diào)遞增;②“T—單調(diào)增函數(shù)”一定是“—單調(diào)增函數(shù)”(其中,且):③函數(shù)是“T—單調(diào)增函數(shù)”(其中表示不大于x的最大整數(shù));④函數(shù)不“T—單調(diào)增函數(shù)”其中,所有正確的結(jié)論序號是______13.如圖所示,正方體的棱長為1,B′C∩BC′=O,則AO與A′C′所成角的度數(shù)為________.14.某工廠產(chǎn)生的廢氣經(jīng)過濾后排放,過濾過程中廢氣的污染物含量P(單位:mg/L)與時間t(單位:h)間的關(guān)系為,其中,是正的常數(shù).如果在前5h消除了10%的污染物,那么10h后還剩百分之幾的污染物________.15.如圖,扇形的周長是6,該扇形的圓心角是1弧度,則該扇形的面積為______.16.已知的定義域為,那么a的取值范圍為_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性;(2)對于,不等式恒成立,求實數(shù)的取值范圍18.已知,,()求及()若的最小值是,求的值19.已知,且求的值;求的值20.在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關(guān)于原點對稱;②向量,;③函數(shù).這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求;(2)求函數(shù)在上的單調(diào)遞減區(qū)間.21.已知集合,關(guān)于的不等式的解集為(1)求;(2)設(shè),若集合中只有兩個元素屬于集合,求的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間【詳解】解:函數(shù),,(1),根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間為,故選C【點睛】本題主要考查函數(shù)的零點的存在性定理的應(yīng)用,屬于基礎(chǔ)題2、A【解析】根據(jù)分段函數(shù),根據(jù)分段函數(shù)將最終轉(zhuǎn)化為求【詳解】根據(jù)分段函數(shù)可知:故選:A3、C【解析】應(yīng)用集合的補運算求即可.【詳解】∵,,∴.故選:C4、C【解析】函數(shù)是定義在上的偶函數(shù),∴,等價為),即.∵函數(shù)是定義在上的偶函數(shù),且在區(qū)間單調(diào)遞增,∴)等價為.即,∴,解得,故選項為C考點:(1)函數(shù)的奇偶性與單調(diào)性;(2)對數(shù)不等式.【思路點晴】本題主要考查對數(shù)的基本運算以及函數(shù)奇偶性和單調(diào)性的應(yīng)用,綜合考查函數(shù)性質(zhì)的綜合應(yīng)用根據(jù)函數(shù)的奇偶數(shù)和單調(diào)性之間的關(guān)系,綜合性較強.由偶函數(shù)結(jié)合對數(shù)的運算法則得:,即,結(jié)合單調(diào)性得:將不等式進行等價轉(zhuǎn)化即可得到結(jié)論.5、B【解析】分析】由指數(shù)函數(shù)和對數(shù)函數(shù)單調(diào)性,結(jié)合臨界值可確定大小關(guān)系.【詳解】,.故選:B.6、C【解析】由題可求A關(guān)于直線的對稱點為及關(guān)于直線的對稱點為,可得直線的方程,聯(lián)立直線,即得.【詳解】設(shè)A關(guān)于直線的對稱點為,則,解得,即,設(shè)關(guān)于直線的對稱點為,則,解得,即,∴直線的方程為:代入,可得,故.故選:C.7、C【解析】先求的范圍,再求的值域.【詳解】令,則,則,故選:C8、A【解析】先判斷出上單調(diào)遞增,由,即可得到答案.【詳解】因為函數(shù)是定義在R上的偶函數(shù),所以的圖像關(guān)于y軸對稱,且.又在上是單調(diào)遞減的,所以在上單調(diào)遞增.因為,,所以:,所以,即.故選:A9、A【解析】利用分段函數(shù)的解析式,由里及外逐步求解函數(shù)值得到方程求解即可【詳解】函數(shù)f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故選A【點睛】本題考查分段函數(shù)應(yīng)用,函數(shù)值的求法,考查計算能力10、B【解析】由對數(shù)函數(shù)的性質(zhì)可得,再代入分段函數(shù)解析式運算即可得解.【詳解】由題意,,所以.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、##0.6【解析】尋找角之間的聯(lián)系,利用誘導(dǎo)公式計算即可【詳解】故答案為:12、②③④【解析】①③④選項可以舉出反例;②可以進行證明.【詳解】①例如,定義域為,存在,對于任意,都有,但在上不單調(diào)遞增,①錯誤;②因為是單調(diào)增函數(shù),所以存在,使得對于任意,都有,因為,,所以,故,即存在實數(shù),使得對于任意,都有,故是單調(diào)增函數(shù),②正確;③,定義域為,當(dāng)時,對任意的,都有,即成立,所以是單調(diào)增函數(shù),③正確;④當(dāng)時,,若,則,顯然不滿足,故不是單調(diào)增函數(shù),④正確.故答案為:②③④13、30°【解析】∵A′C′∥AC,∴AO與A′C′所成的角就是∠OAC(或其補角).∵OC?平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO?平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO與A′C′所成角度數(shù)為30°.點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角14、81%【解析】根據(jù)題意,利用函數(shù)解析式,直接求解.【詳解】由題意可知,,所以.所以10小時后污染物含量,即10小時后還剩81%的污染物.故答案為:81%15、2【解析】由扇形周長求得半徑同,弧長,再由面積公式得結(jié)論【詳解】設(shè)半徑為,則,,所以弧長為,面積為故答案為:216、【解析】根據(jù)題意可知,的解集為,由即可求出【詳解】依題可知,的解集為,所以,解得故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的定義域為,奇函數(shù);(2).【解析】(1)由求定義域,再利用奇偶性的定義判斷其奇偶性;(2)將對于,不等式恒成立,利用對數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為對于,不等式恒成立求解.【小問1詳解】解:由函數(shù),得,即,解得或,所以函數(shù)的定義域為,關(guān)于原點對稱,又,所以奇函數(shù);【小問2詳解】因為對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,令,則在上遞增,所以,所以.18、(1);(2).【解析】(1)利用平面向量的數(shù)量積公式、模長公式求解;(2)將的值域,轉(zhuǎn)化為關(guān)于的一元二次函數(shù)的值域,根據(jù)【詳解】(1),,(2),,,,當(dāng)時,當(dāng)且僅當(dāng)時,取最小值,解得;當(dāng)時,當(dāng)且僅當(dāng)時,取最小值,解得(舍);當(dāng)時,當(dāng)且僅當(dāng)時,取最小值,解得(舍去),綜上所述,.【點睛】本題主要考查求平面向量的數(shù)量積,向量的模,以及由函數(shù)的最值求參數(shù)的問題,熟記平面向量數(shù)量積的坐標(biāo)表示,向量模的坐標(biāo)表示,以及三角函數(shù)的性質(zhì)即可,屬于常考題型.19、(1);(2)【解析】由.,利用同角三角函數(shù)關(guān)系式先求出,由此能求出的值利用同角三角函數(shù)關(guān)系式和誘導(dǎo)公式化簡為,再化簡為關(guān)于的齊次分式求值【詳解】(1)因為.,所以,故(2)【點睛】本題考查三角函數(shù)值的求法,考查同角三角函數(shù)關(guān)系式和誘導(dǎo)公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題型20、選擇見解析;(1);(2)單調(diào)遞減區(qū)間為.【解析】選條件①:由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,得到,解得,再由平移變換和圖象關(guān)于原點對稱,解得,得到,(1)將代入求解;(2)令,結(jié)合求解.選條件②:利用平面向量的數(shù)量積運算得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.選條件③:利用兩角和的正弦公式,二倍角公式和輔助角法化簡得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.【詳解】選條件①:由題意可知,最小正周期,∴,∴,∴,又函數(shù)圖象關(guān)于原點對稱,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函數(shù)在上的單調(diào)遞減區(qū)間為.【點睛】方法點睛:1.討論三角函數(shù)性質(zhì),應(yīng)先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式
函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為.
對于函數(shù)的性質(zhì)(定義域、值域、單調(diào)性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉(zhuǎn)化為研究y=sint的性質(zhì)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西安市雁塔區(qū)第一小學(xué)教師招聘備考題庫帶答案詳解
- 初中生物概念建構(gòu)中的多媒體資源運用與教學(xué)策略教學(xué)研究課題報告
- 2025年保定市寬高高級中學(xué)招聘備考題庫及答案詳解1套
- 2型糖尿病個體化治療藥物轉(zhuǎn)換策略
- 國網(wǎng)浙江電力2026年度高校畢業(yè)生招聘1170人備考題庫及一套參考答案詳解
- 2025年大連海事大學(xué)公開招聘事業(yè)編制非教學(xué)科研人員23人(第一批)備考題庫含答案詳解
- 2025年河南實達國際人力資源合作有限公司招聘宋城產(chǎn)投勞務(wù)派遣人員備考題庫有答案詳解
- 2025年連山教師招聘29人備考題庫完整參考答案詳解
- 2025年上海大學(xué)誠聘法學(xué)院院長備考題庫及答案詳解參考
- 簡約插畫風(fēng)深色年度晚會慶典
- 2025年榆林市住房公積金管理中心招聘(19人)備考筆試試題及答案解析
- 2025年金屬非金屬礦山(地下礦山)安全管理人員證考試題庫含答案
- 2025秋蘇教版(新教材)小學(xué)科學(xué)三年級上冊知識點及期末測試卷及答案
- 2025年及未來5年中國非晶合金變壓器市場深度分析及投資戰(zhàn)略咨詢報告
- 中文核心期刊論文模板(含基本格式和內(nèi)容要求)
- 2024-2025學(xué)年云南省普通高中高二下學(xué)期期末學(xué)業(yè)水平合格性考試數(shù)學(xué)試卷
- GB/T 18213-2025低頻電纜和電線無鍍層和有鍍層銅導(dǎo)體直流電阻計算導(dǎo)則
- 泰康人壽會計筆試題及答案
- 園林綠化養(yǎng)護項目投標(biāo)書范本
- 烷基化裝置操作工安全培訓(xùn)模擬考核試卷含答案
- 汽車租賃行業(yè)組織架構(gòu)及崗位職責(zé)
評論
0/150
提交評論