版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京延慶縣太平莊中學(xué)中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.綜合與實(shí)踐:利用矩形的折疊開展數(shù)學(xué)活動,探究體會圖形在軸對稱,旋轉(zhuǎn)等變換過程中的變化,及其蘊(yùn)含的數(shù)學(xué)思想和方法.動手操作:如圖①,矩形紙片ABCD的邊AB=2,將矩形紙片ABCD對折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,折痕為EF,然后展開,EF與AC交于點(diǎn)H;如圖②,將矩形ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)B落在對角線AC上,且點(diǎn)B與點(diǎn)H重合,展開圖形,折痕為AG,連接GH;若在圖①中連接BH,得到如圖③,點(diǎn)M是線段BH上的動點(diǎn),點(diǎn)N是線段AH上的動點(diǎn),連接AM,MN,且∠AMN=∠ABH;若在圖②中連接BH,交折痕AG于點(diǎn)Q,隱去其它線段,得到如圖④.解決問題:(1)在圖②中,∠ACB=,BC=,=,與△ABG相似的三角形有個;(2)在圖②中,AH2=AE·(從圖②中選擇一條線段填在空白處),并證明你的結(jié)論;(3)在圖③中,△ABH為三角形,設(shè)BM為x,則NH=(用含x的式子表示);拓展延伸:(4)在圖④中,將△ABQ繞點(diǎn)B按順時針方向旋轉(zhuǎn)α(0°≤α≤180°),得到△A′BQ′,連接DQ′,則DQ′的最小值為,當(dāng)tan∠CBQ′=時,△DBQ′的面積最大值為.2.在中,,點(diǎn)D?E分別是的中點(diǎn),將繞點(diǎn)C按順時針方向旋轉(zhuǎn)一定的角度,連接.觀察猜想(1)如圖①,當(dāng)時,填空:①______________;②直線所夾銳角為____________;類比探究(2)如圖②,當(dāng)時,試判斷的值及直線所夾銳角的度數(shù),并說明理由;拓展應(yīng)用(3)在(2)的條件下,若,將繞著點(diǎn)C在平面內(nèi)旋轉(zhuǎn),當(dāng)點(diǎn)D落在射線AC上時,請直接寫出的值.3.(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.4.(問題發(fā)現(xiàn))(1)如圖1所示,在中,,,點(diǎn)在邊上,且,將線段繞點(diǎn)順時針旋轉(zhuǎn)90°得到線段,連接、,的值為______;(類比探究)(2)如圖2所示,在(1)的條件下,點(diǎn)為的中點(diǎn),,將線段繞點(diǎn)順時針旋轉(zhuǎn)90°得到,連接,則的值會發(fā)生改變嗎?說明你的理由;(拓展延伸)(3)如圖3所示,在鈍角中,,,點(diǎn)在邊的延長線上,,連接.將線段繞著點(diǎn)順時針旋轉(zhuǎn),旋轉(zhuǎn)角,連接,則______(請用含有,的式子表示).5.問題探究:(1)如圖①,已知在△ABC中,BC=4,∠BAC=45°,則AB的最大值是.(2)如圖②,已知在Rt△ABC中,∠ABC=90°,AB=BC,D為△ABC內(nèi)一點(diǎn),且AD=2,BD=2.,CD=6,請求出∠ADB的度數(shù).問題解決:(3)如圖③,某戶外拓展基地計(jì)劃在一處空地上修建一個新的拓展游戲區(qū)△ABC,且AB=AC.∠BAC=120°,點(diǎn)A、B、C分別是三個任務(wù)點(diǎn),點(diǎn)P是△ABC內(nèi)一個打卡點(diǎn).按照設(shè)計(jì)要求,CP=30米,打卡點(diǎn)P對任務(wù)點(diǎn)A、B的張角為120°,即∠APB=120°.為保證游戲效果,需要A、P的距離與B、P的距離和盡可能大,試求出AP+BP的最大值.6.(1)問題探究:如圖1,在正方形中,點(diǎn)、、分別是、、上的點(diǎn),且,求證:;(2)類比應(yīng)用:如圖2,在矩形中,,,將矩形沿折疊使點(diǎn)落在點(diǎn)處,得到矩形.①若點(diǎn)為的中點(diǎn),試探究與的數(shù)量關(guān)系;②拓展延伸:連,當(dāng)時,,,求的長.7.在矩形ABCD中,(k為常數(shù)),點(diǎn)P是對角線BD上一動點(diǎn)(不與B,D重合),將射線PA繞點(diǎn)P逆時針旋轉(zhuǎn)90°與射線CB交于點(diǎn)E,連接AE.(1)特例發(fā)現(xiàn):如圖1,當(dāng)k=1時,將點(diǎn)P移動到對角線交點(diǎn)處,可發(fā)現(xiàn)點(diǎn)E與點(diǎn)B重合,則=,∠AEP=;當(dāng)點(diǎn)P移動到其它位置時,∠AEP的大?。ㄌ睢案淖儭被颉安蛔儭保?;(2)類比探究:如圖2,若k≠1時,當(dāng)k的值確定時,請?zhí)骄俊螦EP的大小是否會隨著點(diǎn)P的移動而發(fā)生變化,并說明理由;(3)拓展應(yīng)用:當(dāng)k≠1時,如圖2,連接PC,若PC⊥BD,,PC=2,求AP的長.8.(閱讀理解)定義:如果四邊形的某條對角線平分一組對角,那么把這條對角線叫“協(xié)和線”,該四邊形叫做“協(xié)和四邊形”.(深入探究)(1)如圖1,在四邊形中,,,請說明:四邊形是“協(xié)和四邊形”.(嘗試應(yīng)用)(2)如圖2,四邊形是“協(xié)和四邊形”,為“協(xié)和線”,,,若點(diǎn)、分別為邊、的中點(diǎn),連接,,.求:①與的面積的比;②的正弦值.(拓展應(yīng)用)(3)如圖3,在菱形中,,,點(diǎn)、分別在邊和上,點(diǎn)、分別在邊和上,點(diǎn)為與的交點(diǎn),點(diǎn)在上,連接,若四邊形,都是“協(xié)和四邊形”,“協(xié)和線”分別是、,求的最小值.9.(1)(問題發(fā)現(xiàn))如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:①線段與的數(shù)量關(guān)系為______;②直線與所夾銳角的度數(shù)為_______.(2)(拓展探究)如圖②,將正方形繞點(diǎn)逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.(3)(解決問題)如圖③,在正方形中,,點(diǎn)M為直線上異于B,C的一點(diǎn),以為邊作正方形,點(diǎn)N為正方形的中心,連接,若,直接寫出的長.10.(1)問題提出:如圖①,在矩形中,,點(diǎn)為邊上一點(diǎn),連接,過點(diǎn)作對角線的垂線,垂足為,點(diǎn)為的中點(diǎn),連接,,.可知的形狀為______;(2)深人探究:如圖②,將在平面內(nèi)繞點(diǎn)順時針旋轉(zhuǎn),請判斷的形狀是否變化,并說明理由;(提示:延長到,使;延長到,使,連接,,,構(gòu)造全等三角形進(jìn)行證明)(3)拓展延伸:如果,,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn),,在同一條直線上時,請直接寫出的長.11.將兩個完全相同的三角形紙片和重合放置,其中.(1)操作發(fā)現(xiàn):如圖2,固定使繞點(diǎn)旋轉(zhuǎn),設(shè)的面積為的面積為當(dāng)點(diǎn)恰好落在邊上時,則與的數(shù)量關(guān)系是;(2)猜想論證:當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3所示的位置時,小明猜想中與的數(shù)量關(guān)系為相等,并嘗試分別作出了和中邊上的高請你證明小明的猜想,即證明:.(3)拓展探究:已知,點(diǎn)是角平分線上的一點(diǎn),交于點(diǎn)(如圖4).若射線上存在點(diǎn),使,請直接寫出相應(yīng)的的長.12.(1)問題發(fā)現(xiàn)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:①∠AEB的度數(shù)為;②線段AD,BE之間的數(shù)量關(guān)系為.(2)拓展探究如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請直接寫出點(diǎn)A到BP的距離.13.探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系;②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長.14.(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點(diǎn)E是線段AC上一動點(diǎn),連接DE.填空:①則的值為______;②∠EAD的度數(shù)為_______.(2)類比探究如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點(diǎn)E是線段AC上一動點(diǎn),連接DE.請求出的值及∠EAD的度數(shù);(3)拓展延伸如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時,求線段AD的長.15.定義:有一組鄰邊相等且對角互補(bǔ)的四邊形叫做等補(bǔ)四邊形.(問題理解)(1)如圖1,點(diǎn)A、B、C在⊙O上,∠ABC的平分線交⊙O于點(diǎn)D,連接AD、CD.求證:四邊形ABCD是等補(bǔ)四邊形;(拓展探究)(2)如圖2,在等補(bǔ)四邊形ABCD中,AB=AD,連接AC,AC是否平分∠BCD?請說明理由;(升華運(yùn)用)(3)如圖3,在等補(bǔ)四邊形ABCD中,AB=AD,其外角∠EAD的平分線交CD的延長線于點(diǎn)F.若CD=6,DF=2,求AF的長.16.折紙是一種許多人熟悉的活動.近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:(綜合與實(shí)踐)操作一:如圖1,將正方形紙片ABCD對折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開,得到折痕MN;操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對應(yīng)的點(diǎn)為D′;操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點(diǎn)P;(問題解決)請?jiān)趫D3中解決下列問題:(1)求證:BP=D′P;(2)AP:BP=;(拓展探究)(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請說明理由.17.在△ABC中,AC=BC,∠ACB=α,點(diǎn)D為直線BC上一動點(diǎn),過點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,將AD繞點(diǎn)D順時針旋轉(zhuǎn)α得到ED,ED交直線AB于點(diǎn)O,連接BE.(1)問題發(fā)現(xiàn):如圖1,α=90°,點(diǎn)D在邊BC上,猜想:①AF與BE的數(shù)量關(guān)系是;②∠ABE=度.(2)拓展探究:如圖2,0°<α<90°,點(diǎn)D在邊BC上,請判斷AF與BE的數(shù)量關(guān)系及∠ABE的度數(shù),并給予證明.(3)解決問題如圖3,90°<α<180°,點(diǎn)D在射線BC上,且BD=3CD,若AB=8,請直接寫出BE的長.18.如圖1,在菱形ABCD中,,點(diǎn)E,F(xiàn)分別是AC,AB上的點(diǎn),且,猜想:①的值是_______;②直線DE與直線CF所成的角中較小的角的度數(shù)是_______.(2)類比探究:如圖2,將繞點(diǎn)A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中結(jié)論是否成立,就圖2的情形說明理由.(3)拓展延伸:在繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)三點(diǎn)共線時,請直接寫出CF的長.19.如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是AB邊上的動點(diǎn),DE⊥BC于點(diǎn)E,連接AE,CD,點(diǎn)F,G,H分別是AE,CD,AC的中點(diǎn).(1)觀察猜想:△FGH的形狀是(2)探究論證:把△BDE繞點(diǎn)B按逆時針方向旋轉(zhuǎn)到如圖所示的位置,(1)中的結(jié)論是否仍然成立?請說明理由.(3)拓展延伸:把△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),若BC=6,BE=2,請直接寫出△FGH周長的取值范圍.20.在與中,且,點(diǎn)D始終在線段AB上(不與A、B重合).(1)問題發(fā)現(xiàn):如圖1,若度,的度數(shù)______,______;(2)類比探究:如圖2,若度,試求的度數(shù)和的值;(3)拓展應(yīng)用:在(2)的條件下,M為DE的中點(diǎn),當(dāng)時,BM的最小值為多少?直接寫出答案.【參考答案】***試卷處理標(biāo)記,請不要刪除一、中考幾何壓軸題1.(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可解析:(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可得AG=CG,∠GCH=∠GAH,可求∠ACB=30°,利用三角函數(shù)可求BC=,AG=4,BF=FC=,可求,與△ABG相似的三角形由7個;(2)由EF為折痕,可證△AEH∽△AHG,可得即可;(3)由四邊形ABCD為矩形,點(diǎn)H為對角線AC中點(diǎn),可證△ABH為等邊三角形,再證△ABM∽△MHN,可得即可;(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時,Q′D最小,先求BC=,AQ′=,可求Q′D最小=,當(dāng)BQ′⊥BD時,△BDQ′面積最大∠CBQ′=60°,S△BDQ′最大=.【詳解】解(1)∵點(diǎn)H為AC中點(diǎn),∴AC=2AH,∵折疊,點(diǎn)B與點(diǎn)H重合,∴AB=AH=2,BG=HG,∠BAG=∠HAG=,∠B=∠AHG,∵四邊形ABCD為矩形,∴∠B=90°,∴∠AHG=∠B=90°,∴GH為AC的垂直平分線,∴AG=CG,∠GCH=∠GAH,∴∠BAG=∠HAG=∠GCH,∵∠BAH+∠BCH=180°-∠B=90°,∴3∠ACB=90°∴∠ACB=30°,∴∠BAG=∠HAG=∠GCH=30°,∴tan30°=,AB=2,∴BC=,∵tan∠BAG=tan30°=,∴BG=,∴AG=2BG=4,BF=FC=,∴GF=BF-BG=3-2=1,∴,∵AD∥BC,∴∠DAC=∠ACB=30°,∴∠BAG=∠HAG=∠GHF=∠HCF=∠GCH=∠EAH=∠DAC=∠BCA=30°,∵∠B=∠AHG=∠HFG=∠HFC=∠AEH=∠D=∠GHC=∠CBA=90°,∴△ABG∽△AHG∽△HFG∽△CFH∽△CHG∽△AEH∽△ADC∽△CBA,∴與△ABG相似的三角形由7個,故答案為:30°;6;4;7;(2)∵EF為折痕,∴EH⊥AD,∵∠EAH=∠HAG=30°∠AHG=∠AEH=90°∴△AEH∽△AHG,∴,∴故答案為AG;(3)∵四邊形ABCD為矩形,點(diǎn)H為對角線AC中點(diǎn),∴AH=CH=BH,由圖2知AB=AH,∴AH=BH=AB,∴△ABH為等邊三角形,∴∠ABH=∠AHB=60°,∵∠AMN=∠ABH;∴∠AMN=∠ABH=∠AHB=60°,∴∠BAM+∠AMB=180°-∠ABH=120°,∠AMB+∠NMH=180°-∠AMN=120°,即∠BAM+∠AMB=∠AMB+∠NMH,∴∠BAM=∠NMH,∴△ABM∽△MHN,∴,∵AB=,MH=,∴,∴,故答案為:等邊;,(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時,Q′D最小∵AB=2,AD=BC=6,∴BC=∵AQ′=Q′H=∴Q′D最小=當(dāng)BQ′⊥BD時,△BDQ′面積最大∵tan∠DAC=,∴∠DAC=30°,∴∠CBQ′=90°-∠DBC=90°-30°=60°∴tan∠CBQ'=S△BDQ′最大=;故答案為;;6.【點(diǎn)睛】本題考查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),三角形相似判定與性質(zhì),等邊三角形判定與性質(zhì),兩圖形的最小距離,最大面積,掌握查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),三角形相似判定與性質(zhì),等邊三角形判定與性質(zhì),兩圖形的最小距離,最大面積求法是解題關(guān)鍵.2.(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD解析:(1)①1,②;(2)直線所夾銳角為,見解析;(3)滿足條件的的值為【分析】(1)①②延長BD交AE的延長線于T,BT交AC于O.證明即可解決問題.(2)如圖②中,設(shè)AC交BD于O,AE交BD于T.證明,推出,可得結(jié)論.(3)分兩種情形:①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時,作于H.②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時,分別利用勾股定理求解即可.【詳解】解:(1)如圖①中,延長BD交AE的延長線于T,BT交AC于O.,是等邊三角形,,,,,,,,,∴直線所夾銳角為,故答案為1,.(2)如圖②中,設(shè)AC交于O,AE交于T.,是等腰直角三角形,,,,,,,,,∴直線所夾銳角為.(3)①如圖③-1中,當(dāng)點(diǎn)D落在線段AC上時,作于H.由題意,,,,,在中,②如圖③-2中,當(dāng)點(diǎn)D在AC的延長線上時,同法可得,綜上所述,滿足條件的的值為.【點(diǎn)睛】本題考查幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.3.(1)見解析;(2);見解析;(3)【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GM解析:(1)見解析;(2);見解析;(3)【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【點(diǎn)睛】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,是解題的關(guān)鍵.4.(1);(2)BE+BD的值不會發(fā)生改變,理由見解答;(3)2k?sin【分析】(1)只要證明,即可解決問題;(2)如圖2中,作交于,過點(diǎn)作交于.利用(1)中結(jié)論即可解決問題;(3)如圖③中解析:(1);(2)BE+BD的值不會發(fā)生改變,理由見解答;(3)2k?sin【分析】(1)只要證明,即可解決問題;(2)如圖2中,作交于,過點(diǎn)作交于.利用(1)中結(jié)論即可解決問題;(3)如圖③中,作交的延長線于,作于.只要證明,可證,即可解決問題.【詳解】解:(1)如圖1中,,,,,,,,,,,,故答案為:.(2)的值不會發(fā)生改變,理由如下:作交于,過點(diǎn)作交于,,,,,,是等腰直角三角形,,,,是等腰直角三角形,,,,由(1),知,,,,為邊上的中點(diǎn),,,,,,,,,,;(3)如圖3中,作交的延長線于,作于.,,,,,,,,,,,,,,,,,,..故答案為:.【點(diǎn)睛】本題考查幾何變換綜合題、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.5.(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時針旋轉(zhuǎn)90°得到△CBT解析:(1)4(2)135°(3)PA+PB的最大值為米【分析】(1)作△ABC的外接圓,連接OA,OB,OC,求出OA=OB=OC=2,可得結(jié)論;(2)將△ABD繞點(diǎn)B順時針旋轉(zhuǎn)90°得到△CBT,連接DT,利用勾股定理的逆定理證明∠CTD=90°,可得結(jié)論;(3)將△ABP繞點(diǎn)A逆時針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ,證明PA+PB=JC,再求出JC的最大值即可求解.【詳解】(1)如圖①,作△ABC的外接圓,連接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=2=OA∵AB≤OA+OB∴AB≤4∴AB的最大值為4故答案為:4;(2)如圖②,將△ABD繞點(diǎn)B順時針旋轉(zhuǎn)90°得到△CBT,連接DT由題意可得DT=BD=2,CT=AD=2∵CD=6∴∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如圖③,將△ABP繞點(diǎn)A逆時針旋轉(zhuǎn)120°得到△ACK,延長CK交PA延長線于J,作△PJC的外接圓,連接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等邊三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=∵CJ≤OJ+OC∴CJ≤∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值為米.【點(diǎn)睛】此題主要考查旋轉(zhuǎn)的綜合運(yùn)用,解題的關(guān)鍵是熟知三角形外接圓的性質(zhì)、三角函數(shù)的應(yīng)用、旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用及三角形的三邊關(guān)系的應(yīng)用.6.(1)見解析;(2)①;②【分析】(1)過點(diǎn)作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點(diǎn)P作于點(diǎn),先由①得,再證解析:(1)見解析;(2)①;②【分析】(1)過點(diǎn)作于,證,即可證得;(2)①設(shè),則,利用勾股定理求得,再利用勾股定理表示出,再證明,可得,由此可得,進(jìn)而可求得答案;②過點(diǎn)P作于點(diǎn),先由①得,再證明∠BFE=∠CGP,可得,進(jìn)而利用勾股定理可求得,,,最后根據(jù),可得,計(jì)算即可.【詳解】(1)證明:如圖,過點(diǎn)作于,則∠AHG=∠FHG=90°,∵在正方形中,∴∠HAD=∠D=∠B=90°,AD=AB,∴四邊形AHGD為矩形,∴AD=HG,∴AB=HG,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∴∠BAE=∠FGH,∴在與中∴(ASA),∴;①∵點(diǎn)為的中點(diǎn),∴,∵折疊,∴設(shè),∴,在RtBFE中,BF2+BE2=EF2,∴,解得:,又∵,∴,如圖,過點(diǎn)作于,則∠AHG=∠FHG=90°,∵在矩形中,∴∠HAD=∠BCD=∠B=90°,∴四邊形AHGD為矩形,∴BC=HG,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∴∠BAE=∠FGH,又∵∠FHG=∠D=90°,∴,,,,,,又∵,,∴,∴;②如圖,過點(diǎn)P作于點(diǎn),∵,,∴由①得,∵∠EPG=∠GCE=90°,∠EOC=∠GOP,∴∠CGP=∠OEC,∵∠FEP=∠B=90°,∴∠OEC+∠BEF=90°,∠BFE+∠BEF=90°,∴∠BFE=∠OEC,∴∠BFE=∠CGP,又∵,∴,∴設(shè),,則,,,解得:,,,,,,,,,,,,,,.【點(diǎn)睛】本題考查了正方形和矩形的性質(zhì),全等三角形和相似三角形的判定及性質(zhì),折疊的性質(zhì),勾股定理,題目綜合性較強(qiáng),有一定的難度,熟練掌握并靈活運(yùn)用相關(guān)知識是解決本題的關(guān)鍵.7.(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對角線交點(diǎn)時,根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動到其它位置時,過點(diǎn)P分別作AB,BC的垂線,垂足分解析:(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對角線交點(diǎn)時,根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動到其它位置時,過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM≌△PEN,可得∠AEP的大小不變;(2)類似(1),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM∽△PEN,可得∠AEP的大小不變;(3)利用(2)的結(jié)論,證BE=EC.再證△ABE∽△BCD,利用比例式求出k,再利用三角函數(shù)求出AP的長.【詳解】解:(1)如圖,∵k=1,∴在矩形ABCD是正方形,∵點(diǎn)P移動到對角線交點(diǎn)處,∴PA=PE,∠AEP=45°,故,如圖,當(dāng)點(diǎn)P移動到其它位置時,過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四邊形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不變;故答案為:1,45°,不變;(2)∠AEP的大小不變.理由如下:過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四邊形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k為定值,∴∠AEP的大小不變.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.在Rt△BPC中,tan∠PCB==tan∠AEP=k=,∴PB=PC=,由勾股定理得,∴PE=BC=,∴PA=PE=.【點(diǎn)睛】本題考查了矩形的性質(zhì)與判定,正方形的判定與性質(zhì),相似三角形判定與性質(zhì),解直角三角形,解題關(guān)鍵是恰當(dāng)作輔助線,構(gòu)建全等三角形或相似三角形,利用解直角三角形的知識求解.8.(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的解析:(1)證明見解析;(2)①;②;(3).【分析】(1)如圖(見解析),先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)“協(xié)和四邊形”的定義即可得證;(2)①先根據(jù)“協(xié)和四邊形”的定義、三角形全等的判定定理可得,從而可得,再根據(jù)等邊三角形的判定與性質(zhì)可得,然后設(shè),解直角三角形可得,從而可得,最后利用三角形的面積公式即可得;②如圖(見解析),設(shè),先利用勾股定理可得,再利用三角形的面積公式可得,然后根據(jù)正弦三角函數(shù)的定義即可得;(3)如圖(見解析),先解直角三角形可得,再根據(jù)菱形的性質(zhì)、平行線的性質(zhì)可得,從而可得,然后根據(jù)垂線段最短可得當(dāng)時,取得最小值,最后根據(jù)相似三角形的判定與性質(zhì)即可得.【詳解】證明:(1)如圖,連接,在和中,,,,平分和,四邊形是“協(xié)和四邊形”;(2)①如圖,設(shè)與相交于點(diǎn),為“協(xié)和線”,平分和,,在和中,,,,∵點(diǎn)、分別為邊、的中點(diǎn),,,是等邊三角形,,(等腰三角形的三線合一),設(shè),則,∵在中,,,在中,,,,即與的面積的比為;②如圖,過點(diǎn)作于點(diǎn),由(2)①知,垂直平分,,設(shè),則,同(2)①可得:,,,,解得,則在中,;(3)如圖,過點(diǎn)作,交延長線于點(diǎn),,,在中,,四邊形是菱形,,,同(2)①可證:垂直平分,,,,由垂線段最短可知,當(dāng)時,取得最小值,在和中,,,,即,解得,即的最小值為.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)、解直角三角形、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等知識點(diǎn),較難的是題(3),利用垂線段最短得出當(dāng)時,取得最小值是解題關(guān)鍵.9.(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長交的延長線于點(diǎn),交于點(diǎn)解析:(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長交的延長線于點(diǎn),交于點(diǎn),根據(jù)四邊形的性質(zhì)得到,根據(jù)得到,根據(jù)相似三角形的性質(zhì)即可解決問題;(3)【解決問題】需分兩種情況討論:①當(dāng)點(diǎn)M在線段BC上時,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC-CM=2,從而可求出CN的值;②當(dāng)點(diǎn)M在線段BC的延長線上時,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC+CM=6,從而可求出CN的值.【詳解】解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段與的數(shù)量關(guān)系為;②直線與所夾銳角的度數(shù)為.理由:如圖①中,連接.易證,,三點(diǎn)共線.∵.,∴.故答案為,.(2)【拓展探究】結(jié)論不變.理由:連接,,延長交的延長線于點(diǎn),交于點(diǎn).∵,∴,∵,∴,∴,∴,∴,∵,∴.(3)【解決問題】①當(dāng)點(diǎn)M在線段BC上時,如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC-∠MAC=∠MAN-∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC-CM=2,∴CN=BM=;②當(dāng)點(diǎn)M在線段BC的延長線上時,如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC+CM=2=6,∴CN=BM=.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì).解題的關(guān)鍵是正確尋找相似三角形解決問題.10.(1)等邊三角形;(2)的形狀不變,理由見解析;(3)或.【分析】(1)先根據(jù)矩形的性質(zhì)、解直角三角形可得,再根據(jù)直角三角形斜邊上的中線可得,然后根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)可得,最后解析:(1)等邊三角形;(2)的形狀不變,理由見解析;(3)或.【分析】(1)先根據(jù)矩形的性質(zhì)、解直角三角形可得,再根據(jù)直角三角形斜邊上的中線可得,然后根據(jù)等腰三角形的性質(zhì)、三角形的外角性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得出結(jié)論;(2)如圖(見解析),先根據(jù)線段垂直平分線的判定與性質(zhì)、三角形全等的判定定理證出,再根據(jù)三角形全等的性質(zhì)可得,從而可得,然后根據(jù)三角形中位線定理可得,,從而可得,最后根據(jù)等邊三角形的判定即可得出答案;(3)分點(diǎn)在線段上和點(diǎn)在線段上兩種情況,再利用直角三角形的性質(zhì)、勾股定理分別求出的長,然后根據(jù)線段中點(diǎn)的定義、線段的和差即可得.【詳解】解:(1)在矩形中,,,在中,,,點(diǎn)為的中點(diǎn),,,同理可得:,,,,,是等邊三角形,故答案為:等邊三角形;(2)的形狀不變,理由如下:如圖,延長到,使;延長到,使,連接,其中相交于點(diǎn),相交于點(diǎn),相交于點(diǎn),由旋轉(zhuǎn)的性質(zhì)得:,,垂直平分,,同理可得:,,即,在和中,,,,,,點(diǎn)為的中點(diǎn),是的中位線,,同理可得:,,是等邊三角形;(3)由題意,分以下兩種情況:①如圖,當(dāng)點(diǎn)在線段上時,,,,在中,,,在中,,,,;②如圖,當(dāng)點(diǎn)在線段上時,同理可得:,,,,綜上,的長為或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、解直角三角形、三角形全等的判定定理與性質(zhì)、三角形中位線定理等知識點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.11.(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求解析:(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點(diǎn)C到AB的距離等于點(diǎn)D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點(diǎn)D作//BE,求出四邊形是菱形,根據(jù)菱形的對邊相等可得BE=,然后根據(jù)等底等高的三角形的面積相等可知點(diǎn)為所求的點(diǎn),過點(diǎn)D作⊥BD,求出∠=60°,從而得到△是等邊三角形,然后求出,再求出∠=∠,利用“邊角邊”證明△和全等,根據(jù)全等三角形的面積相等可得點(diǎn)也是所求的點(diǎn),根據(jù)菱形和等邊三角形的性質(zhì)可得結(jié)論.【詳解】解:(1)∵△DEC繞點(diǎn)C旋轉(zhuǎn),點(diǎn)D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°?∠B=90°?30°=60°,∴△ACD是等邊三角形,
∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即;如圖3.是由繞點(diǎn)旋轉(zhuǎn)得到,..在和中.的面積和的面積相等(等底等高的三角形的面積相等)即(3)如圖4,過點(diǎn)D作//BE,∵BD平分∠ABC,
∠ABD=∠DBC,
∵D//BE,DE//B,∴四邊形BED是平行四邊形,∠ABD=∠BDE,∴∠DBC=∠BDE,
∴BE=DE,
∴四邊形BED是菱形,∴BE=D,且BE、D上的高相等,此時;過點(diǎn)D作D⊥BD,∵∠ABC=60°,D//BE,∴∠D=∠ABC=60°,∵B=D,∠BD=∠ABC=30°,∠DB=90°,∴∠D=∠ABC=60°,∴△D是等邊三角形,∴D=D,∵BD=CD,∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),
∴∠DBC=∠DCB=×60°=30°,∴∠CD=180°?∠BCD=180°?30°=150°,∠CD=360°?150°?60°=150°,∴∠CD=∠CD∵在△CD和△CD中,D=D,∠CD=∠CD,CD=CD,∴△CD≌△CD(SAS),∴點(diǎn)也是所求的點(diǎn),又∵BE=4=B=D,△D是等邊三角形,∴B=4=,∴B=8,綜上所述:當(dāng)BF=4或8時,.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的面積、等邊三角形的判定與性質(zhì)、直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,還要注意(3)中符合條件的點(diǎn)F有兩個.12.(1)①60°;②相等;(2)∠AEB=90°,AE=2CM+BE,證明見解析;(3),【分析】(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一解析:(1)①60°;②相等;(2)∠AEB=90°,AE=2CM+BE,證明見解析;(3),【分析】(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.(3)由PD=1可得:點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上;由∠BPD=90°可得:點(diǎn)P在以BD為直徑的圓上.顯然,點(diǎn)P是這兩個圓的交點(diǎn),由于兩圓有兩個交點(diǎn),接下來需對兩個位置分別進(jìn)行討論.然后,添加適當(dāng)?shù)妮o助線,借助于(2)中的結(jié)論即可解決問題.【詳解】解:(1)①如圖1.∵△ACB和△DCE均為等邊三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.∵△DCE為等邊三角形,∴∠CDE=∠CED=60°.∵點(diǎn)A,D,E在同一直線上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.故答案為:60°.②∵△ACD≌△BCE,∴AD=BE.故答案為:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如圖2.∵△ACB和△DCE均為等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE為等腰直角三角形,∴∠CDE=∠CED=45°.∵點(diǎn)A,D,E在同一直線上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.(3)點(diǎn)A到BP的距離為或.理由如下:∵PD=1,∴點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上.∵∠BPD=90°,∴點(diǎn)P在以BD為直徑的圓上,∴點(diǎn)P是這兩圓的交點(diǎn).①當(dāng)點(diǎn)P在如圖3①所示位置時,連接PD、PB、PA,作AH⊥BP,垂足為H,過點(diǎn)A作AE⊥AP,交BP于點(diǎn)E,如圖3①.∵四邊形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°,∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD為直徑的圓上,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,點(diǎn)B、E、P共線,AH⊥BP,∴由(2)中的結(jié)論可得:BP=2AH+PD,∴=2AH+1,∴AH=.②當(dāng)點(diǎn)P在如圖3②所示位置時,連接PD、PB、PA,作AH⊥BP,垂足為H,過點(diǎn)A作AE⊥AP,交PB的延長線于點(diǎn)E,如圖3②.同理可得:BP=2AH﹣PD,∴=2AH﹣1,∴AH=.綜上所述:點(diǎn)A到BP的距離為或.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、圓周角定理、三角形全等的判定與性質(zhì)等知識,考查了運(yùn)用已有的知識和經(jīng)驗(yàn)解決問題的能力,是體現(xiàn)新課程理念的一道好題.而通過添加適當(dāng)?shù)妮o助線從而能用(2)中的結(jié)論解決問題是解決第(3)的關(guān)鍵.13.(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由詳見解析;(2)DE=.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)作輔助線,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)如圖3,同理作旋轉(zhuǎn)三角形,根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3﹣x,根據(jù)勾股定理得出方程,求出x即可.【詳解】解:(1)∵把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共線,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案為:EF=BE+DF;②成立,理由:如圖2,把△ABE繞A點(diǎn)旋轉(zhuǎn)到△ADG,使AB和AD重合,則AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一條直線上,與①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如圖3,把△AEC繞A點(diǎn)旋轉(zhuǎn)到△AFB,使AB和AC重合,連接DF,則AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,設(shè)DE=x,則DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【點(diǎn)睛】本題考查了四邊形的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,運(yùn)用類比的思想;首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.14.(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=解析:(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=∠BCE=45°,從而可得到結(jié)論;(2)通過證明△ABD∽△BCE,可得的值,∠BAD=∠ACB=60°,即可求∠EAD的度數(shù);(3)由直角三角形的性質(zhì)可證AM=BM=DE,即可求DE=4,由勾股定理可求CE的長,從而可求出AD的長.【詳解】(1)∵∠ABC=∠DBE=90°,∠ACB=∠BED=45°,∴∠CBE=∠ABD,∠CAB=45°∴AB=BC,BE=DE,∴△BCE≌△BAD∴AD=CE,∠BAD=∠BCE=45°∴=1,∠EAD=∠CAB+∠BAD=90°故答案為:1,(2),∠EAD=90°理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°∴∠ABD=∠EBC,∠BAC=∠BDE=30°∴在Rt△ABC中,tan∠ACB==tan60°=在Rt△DBE中,tan∠BED==tan60°=∴=又∵∠ABD=∠EBC∴△ABD∽△BCE∴==,∠BAD=∠ACB=60°∵∠BAC=30°∴∠EAD=∠BAD+∠BAC=60°+30°=90°,(3)如圖,由(2)知:==,∠EAD=90°∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且點(diǎn)M是DE的中點(diǎn),∴AM=BM=DE,∵△ABM為直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,設(shè)EC=x,則AD=x,AE=8-xRt△ADE中,AE2+AD2=DE2∴(8-x)2+(x)2=(4)2,解之得:x=2+2(負(fù)值舍去),∴EC=2+2,∴AD=CE=2+6,∴線段AD的長為(2+6),【點(diǎn)睛】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì)等知識.15.(1)見解析;(2)AC平分∠BCD,理由見解析;(3)AF=4.【分析】(1)由圓內(nèi)接四邊形互補(bǔ)可知∠A+∠C=180°,∠ABC+∠ADC=180°,再證AD=CD,即可根據(jù)等補(bǔ)四邊形的解析:(1)見解析;(2)AC平分∠BCD,理由見解析;(3)AF=4.【分析】(1)由圓內(nèi)接四邊形互補(bǔ)可知∠A+∠C=180°,∠ABC+∠ADC=180°,再證AD=CD,即可根據(jù)等補(bǔ)四邊形的定義得出結(jié)論;(2)過點(diǎn)A分別作AE⊥BC于點(diǎn)E,AF垂直CD的延長線于點(diǎn)F,證△ABE≌△ADF,得到AE=AF,根據(jù)角平分線的判定可得出結(jié)論;
(3)連接AC,先證∠EAD=∠BCD,推出∠FCA=∠FAD,再證△ACF∽△DAF,利用相似三角形對應(yīng)邊的比相等可求出AF的長.【詳解】(1)證明:∵四邊形ABCD為圓內(nèi)接四邊形∴∠A+∠C=180°,∠ABC+∠ADC=180°.∵BD平分∠ABC∴∠ABD=∠CBD∴弧AD=弧CD∴AD=CD∴四邊形ABCD是等補(bǔ)四邊形(2)AC平分∠BCD,理由如下:過點(diǎn)A作AE⊥BC于E,AF⊥CD于F則∠AEB=∠AFD=90°∵四邊形ABCD是等補(bǔ)四邊形∴∠ADC+∠B=180°又∵∠ADC+∠ADF=180°∴∠B=∠ADF在△AFD與△AEB中∴≌∴∴點(diǎn)A一定在∠BCD的平分線上即AC平分∠BCD.(3)連接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=∠BCD同理∠FAD=∠EAD∴∠FCA=∠FAD.又∵∠F=∠F∴△FAD∽△FCA∴即∴AF=4【點(diǎn)睛】本題考查了新定義等補(bǔ)四邊形,圓的有關(guān)性質(zhì),全等三角形的判定與性質(zhì),角平分線的判定,相似三角形的判定與性質(zhì)等,解題關(guān)鍵是要能夠通過自主學(xué)習(xí)來進(jìn)行探究,運(yùn)用等.16.(1)見解析;(2)2:1;(3)點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn),理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性解析:(1)見解析;(2)2:1;(3)點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn),理由見解析【分析】(1)如圖1,連接PC,根據(jù)正方形的性質(zhì)、HL定理證明△CD′P≌△CBP,根據(jù)全等三角形的性質(zhì)得出結(jié)論;(2)設(shè)BP=x,根據(jù)翻轉(zhuǎn)變換的性質(zhì)、勾股定理列出方程,解方程即可;(3)如圖2,連接QM,證明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),根據(jù)勾股定理列出方程,解方程即可.【詳解】(1)證明:如圖1,連接PC.∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:設(shè)正方形紙片ABCD的邊長為1.則AM=DM=D′M=.設(shè)BP=x,則MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根據(jù)勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案為:2:1.(3)解:點(diǎn)Q是AB邊的四等分點(diǎn),點(diǎn)E是AD邊的五等分點(diǎn).理由:如圖2,連接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,設(shè)正方形ABCD的邊長為1,AQ=QD′=y(tǒng),則QP=AP﹣AQ=﹣y.在Rt△QPD′中,根據(jù)勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即點(diǎn)Q是AB邊的四等分點(diǎn),∵EF∥AB,∴,即,解得AE=.∴點(diǎn)E為AD的五等分點(diǎn).【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),翻轉(zhuǎn)變換的性質(zhì)全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握折疊的性質(zhì)及方程思想是解題的關(guān)鍵.17.(1)①AF=BE,②90°;(2)AF=BE,∠ABE=α.理由見解析;(3)BE的長為2或4.【分析】(1)①由等腰直角三角形的判定和性質(zhì)可得:∠ABC=45°,由平行線的性質(zhì)可得∠FDB=解析:(1)①AF=BE,②90°;(2)AF=BE,∠ABE=α.理由見解析;(3)BE的長為2或4.【分析】(1)①由等腰直角三角形的判定和性質(zhì)可得:∠ABC=45°,由平行線的性質(zhì)可得∠FDB=∠C=90°,進(jìn)而可得由等角對等邊可得DF=DB,由旋轉(zhuǎn)可得:∠ADF=∠EDB,DA=DE,繼而可知△ADF≌△EDB,繼而即可知AF=BE;②由全等三角形的性質(zhì)可知∠DAF=∠E,繼而由三角形內(nèi)角和定理即可求解;(2)由平行線的性質(zhì)可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等邊對等角可得∠ABC=∠CAB,進(jìn)而根據(jù)等角對等邊可得DB=DF,再根據(jù)全等三角形的判定方法證得△ADF≌△EDB,進(jìn)而可得求證AF=BE,∠ABE=∠FDB=α;(3)分兩種情況考慮:①如圖(3)中,當(dāng)點(diǎn)D在BC上時,②如圖(4)中,當(dāng)點(diǎn)D在BC的延長線上時,由平行線分線段成比例定理可得、,代入數(shù)據(jù)求解即可;【詳解】(1)問題發(fā)現(xiàn):如圖1中,設(shè)AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案為:①AF=BE,②90°.(2)拓展探究:結(jié)論:AF=BE,∠ABE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- “聚才灣區(qū)創(chuàng)領(lǐng)未來”深圳國家高技術(shù)產(chǎn)業(yè)創(chuàng)新中心2026屆校園招聘15人備考題庫及參考答案詳解1套
- 2025年江西水投資本管理有限公司第四批社會招聘備考題庫完整答案詳解
- 2025年上海交通大學(xué)變革性分子前沿科學(xué)中心樊春海院士姚廣保課題組招聘科研助理備考題庫及參考答案詳解
- 2025年湖南省長沙市單招職業(yè)傾向性考試模擬測試卷附答案
- 2026年青島膠州市“優(yōu)才聚膠”備考題庫中小學(xué)教師選聘(第二批)備考題庫有答案詳解
- 2025年貴州銅仁數(shù)據(jù)職業(yè)學(xué)院第二學(xué)期教師招聘11人備考題庫及一套參考答案詳解
- 池塘合同范本模板
- 汽車保賣合同范本
- 汽車廣告合同協(xié)議
- 汽車銷售解協(xié)議書
- 鋼板租賃合同條款(2025版)
- 輻射性白內(nèi)障的發(fā)現(xiàn)與研究
- 珠海市產(chǎn)業(yè)和招商扶持政策匯編(2025年版)
- 國開機(jī)考 答案2人力資源管理2025-06-21
- 物理●山東卷丨2024年山東省普通高中學(xué)業(yè)水平等級考試物理試卷及答案
- 提升會計(jì)職業(yè)素養(yǎng)的試題及答案
- 電動吸盤出租合同協(xié)議
- 胃穿孔的相關(guān)試題及答案
- 制藥行業(yè)清潔生產(chǎn)標(biāo)準(zhǔn)
- 教育學(xué)原理知到智慧樹章節(jié)測試課后答案2024年秋浙江師范大學(xué)
- 醫(yī)學(xué)影像技術(shù)技士題庫
評論
0/150
提交評論