版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州瑯岐中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個(gè)數(shù)不確定2.若兩定點(diǎn)A,B的距離為3,動(dòng)點(diǎn)M滿足,則M點(diǎn)的軌跡圍成區(qū)域的面積為()A. B.C. D.3.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直4.已知曲線與直線總有公共點(diǎn),則m的取值范圍是()A. B.C. D.5.某一電子集成塊有三個(gè)元件a,b,c并聯(lián)構(gòu)成,三個(gè)元件是否有故障相互獨(dú)立.已知至少1個(gè)元件正常工作,該集成塊就能正常運(yùn)行.若每個(gè)元件能正常工作的概率均為,則在該集成塊能夠正常工作的情況下,有且僅有一個(gè)元件出現(xiàn)故障的概率為()A. B.C. D.6.美學(xué)四大構(gòu)件是:史詩(shī)、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個(gè)橢圓,若切面圓柱體的最長(zhǎng)母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個(gè)底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.7.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,8.甲、乙同時(shí)參加某次數(shù)學(xué)檢測(cè),成績(jī)?yōu)閮?yōu)秀的概率分別為、,兩人的檢測(cè)成績(jī)互不影響,則兩人的檢測(cè)成績(jī)都為優(yōu)秀的概率為()A. B.C. D.9.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.310.用反證法證明“若a,b∈R,,則a,b不全為0”時(shí),假設(shè)正確的是()A.a,b中只有一個(gè)為0 B.a,b至少一個(gè)不為0C.a,b至少有一個(gè)為0 D.a,b全為011.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對(duì)相關(guān)曲線.已知,是一對(duì)相關(guān)曲線的焦點(diǎn),Р是這對(duì)相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定12.已知隨機(jī)變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.76二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱臺(tái)上、下底面邊長(zhǎng)分別為1和2,高為1,則這個(gè)正三棱臺(tái)的體積為______.14.若橢圓和圓(c為橢圓的半焦距)有四個(gè)不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.15.從正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),可得到四面體的概率為________16.橢圓C:的左、右焦點(diǎn)分別為,,P為橢圓上異于左右頂點(diǎn)的任意一點(diǎn),、的中點(diǎn)分別為M、N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長(zhǎng)為4,則的周長(zhǎng)是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面的距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說明理由18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點(diǎn)E為棱PC的動(dòng)點(diǎn).(1)當(dāng)點(diǎn)E是棱PC的中點(diǎn)時(shí),求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點(diǎn),滿足,求二面角P-AB-E的余弦值.19.(12分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和20.(12分)已知a>0,b>0,a+b=1,求證:.21.(12分)若分別是橢圓的左、右焦點(diǎn),是該橢圓上的一個(gè)動(dòng)點(diǎn),且(1)求橢圓的方程(2)是否存在過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),使(其中為坐標(biāo)原點(diǎn))?若存在,求出直線的斜率;若不存在,說明理由22.(10分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關(guān)系即可判斷作答.【詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C2、D【解析】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,求出點(diǎn)M的軌跡方程即可計(jì)算得解.【詳解】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,如圖,設(shè)點(diǎn),則,化簡(jiǎn)并整理得:,于是得點(diǎn)M的軌跡是以點(diǎn)為圓心,2為半徑的圓,其面積為,所以M點(diǎn)的軌跡圍成區(qū)域的面積為.故選:D3、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C4、D【解析】對(duì)曲線化簡(jiǎn)可知曲線表示以點(diǎn)為圓心,2為半徑的圓的下半部分,對(duì)直線方程化簡(jiǎn)可得直線過定點(diǎn),畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因?yàn)?,所以曲線表示以點(diǎn)為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點(diǎn),如圖所示設(shè)曲線與軸的兩個(gè)交點(diǎn)分別為,直線過定點(diǎn),為曲線上一動(dòng)點(diǎn),根據(jù)圖可知,若曲線與直線總有公共點(diǎn),則,得,設(shè)直線為,則,解得,或,所以,所以,所以,故選:D5、A【解析】記事件為該集成塊能夠正常工作,事件為僅有一個(gè)元件出現(xiàn)故障,進(jìn)而結(jié)合對(duì)立事件的概率公式得,再根據(jù)條件概率公式求解即可.【詳解】解:記事件為該集成塊能夠正常工作,事件為僅有一個(gè)元件出現(xiàn)故障,則為該集成塊不能正常工作,所以,,所以故選:A6、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng)為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長(zhǎng)母線與最短母線所在截面如圖所示從而因此在橢圓中長(zhǎng)軸長(zhǎng),短軸長(zhǎng),,故選:A【點(diǎn)睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.7、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.8、D【解析】利用相互獨(dú)立事件概率乘法公式直接求解.【詳解】甲、乙同時(shí)參加某次數(shù)學(xué)檢測(cè),成績(jī)?yōu)閮?yōu)秀的概率分別為、,兩人的檢測(cè)成績(jī)互不影響,則兩人的檢測(cè)成績(jī)都為優(yōu)秀的概率為.故選:D9、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.10、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D11、A【解析】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.12、A【解析】根據(jù)給定條件利用正態(tài)分布的對(duì)稱性計(jì)算作答.【詳解】因隨機(jī)變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對(duì)稱性得:,所以的值為0.24.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先計(jì)算兩個(gè)底面的面積,再由體積公式計(jì)算即可.【詳解】上底面的面積為,下底面的面積為,則這個(gè)正三棱臺(tái)的體積為.故答案為:14、【解析】當(dāng)圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間時(shí),橢圓和圓有四個(gè)不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個(gè)焦點(diǎn),故圓的直徑介于橢圓長(zhǎng)軸和短軸長(zhǎng)度范圍之間,即.由得,兩邊平方并化簡(jiǎn)得,即①.由得,兩邊平方并化簡(jiǎn)得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.15、【解析】計(jì)算出正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn)的取法和分從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)、從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)、從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)可得到四面體的取法,由古典概型概率計(jì)算公式可得答案.【詳解】正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),共有取法,可得到四面體的情況有從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)有種;從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)有種,其中當(dāng)上底面和下底面取的四個(gè)點(diǎn)在同一平面時(shí)共有10種情況不符合,此種情況共有種;從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)有種;一個(gè)有種,所以可得到四面體的概率為.故答案為:.16、【解析】先證明則四邊形OMPN是平行四邊形,進(jìn)而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因?yàn)镸,O,N分別為的中點(diǎn),所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長(zhǎng)為4可知,,即,則,于是的周長(zhǎng)是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因?yàn)椋謩e是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫妫矫?,所以平面平面,因?yàn)椋?,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因,所以,所以,得,所以點(diǎn)到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以18、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點(diǎn)的坐標(biāo),然后根據(jù)求出的值,從而可得點(diǎn)的坐標(biāo),然后利用空間向量求二面角【小問1詳解】因?yàn)榈酌鍭BCD,平面,所以因?yàn)?,所以兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)椋?,點(diǎn)E為棱PC的動(dòng)點(diǎn),所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問2詳解】,因?yàn)镋為棱PC上任一點(diǎn),所以設(shè),所以,因?yàn)?,所以,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個(gè)法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為19、(1);(2).【解析】(1)根據(jù)給定條件列式求出數(shù)列的首項(xiàng)即可作答.(2)由(1)的結(jié)論求出,再借助裂項(xiàng)相消法計(jì)算作答.【小問1詳解】因?yàn)閿?shù)列是公比為2的等比數(shù)列,且是與的等差中項(xiàng),則有,即,解得,所以.【小問2詳解】由(1)知,,則,即有,所以.20、見解析【解析】將代入式子,得到,,進(jìn)而進(jìn)行化簡(jiǎn),最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當(dāng)且僅當(dāng),即時(shí)取“=”21、(1);(2)存在;【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡(jiǎn)寫出根與系數(shù)關(guān)系,利用列方程,化簡(jiǎn)求得直線的斜率.【小問1詳解】依題意,得橢圓的方程為【小問2詳解】存在.理由如下:顯然當(dāng)直線的斜率不存在,即時(shí),不滿足條件故由題意可設(shè)的方程為.由是直線與橢圓的兩個(gè)不同的交點(diǎn),設(shè),由消去y,并整理,得,則,解得,由根與系數(shù)的關(guān)系得,,即存在斜率的直線與橢圓交于不同的兩點(diǎn),使22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年社區(qū)自給自足農(nóng)業(yè)項(xiàng)目可行性研究報(bào)告
- 2025年區(qū)域飲用水安全保障項(xiàng)目可行性研究報(bào)告
- 個(gè)人應(yīng)收協(xié)議書
- 中介買房協(xié)議書
- 產(chǎn)品出樣協(xié)議書
- 人教版九年級(jí)下冊(cè)英語月考題庫(kù)帶完整參考答案
- 云南省2024云南騰沖市文化和旅游局所屬事業(yè)單位校園招聘緊缺人才(2人)筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- 會(huì)計(jì)崗位面試要點(diǎn)及專業(yè)知識(shí)考核
- 面試題集中化控股質(zhì)量總經(jīng)理崗位
- 保密技術(shù)工程師崗位面試題及答案
- 《t檢驗(yàn)統(tǒng)計(jì)》課件
- 醫(yī)學(xué)檢驗(yàn)考試復(fù)習(xí)資料
- DBJ50T-建筑分布式光伏電站消防技術(shù)標(biāo)準(zhǔn)
- 某工程消防系統(tǒng)施工組織設(shè)計(jì)
- 軍事訓(xùn)練傷的防治知識(shí)
- 應(yīng)急管理理論與實(shí)踐 課件 第3、4章 應(yīng)急預(yù)案編制與全面應(yīng)急準(zhǔn)備、應(yīng)急響應(yīng)啟動(dòng)與科學(xué)現(xiàn)場(chǎng)指揮
- 2025年常德職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- KCA數(shù)據(jù)庫(kù)試題庫(kù)
- 【MOOC】新媒體文化十二講-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 倉(cāng)庫(kù)主管個(gè)人年終總結(jié)
- 2024年初中七年級(jí)英語上冊(cè)單元寫作范文(新人教版)
評(píng)論
0/150
提交評(píng)論