2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題含解析_第1頁
2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題含解析_第2頁
2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題含解析_第3頁
2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題含解析_第4頁
2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆湖北省襄陽市高二上數(shù)學期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設橢圓:的右頂點為,右焦點為,為橢圓在第二象限內(nèi)的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.2.中國明代商人程大位對文學和數(shù)學頗感興趣,他于60歲時完成杰作《直指算法統(tǒng)宗》.這是一本風行東亞的數(shù)學名著,該書A.76石 B.77石C.78石 D.79石3.若是函數(shù)的一個極值點,則的極大值為()A. B.C. D.4.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個零點C.函數(shù)有極大值16D.函數(shù)有最小值5.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.6.某四面體的三視圖如圖所示,該四面體的體積為()A. B.C. D.7.平行六面體中,若,則()A. B.1C. D.8.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.9.直線與圓相交于點,點是坐標原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.10.設,“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件11.若命題“對任意,使得成立”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.12.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现椋蠐?粒下珠,得到的數(shù)為質(zhì)數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為__________14.已知直線和直線垂直,則實數(shù)___________.15.雙曲線的離心率為____16.在數(shù)列中,,,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),是的一個極值點.(1)求b的值;(2)當時,求函數(shù)的最大值.18.(12分)已知向量,.(1)計算和;(2)求.19.(12分)函數(shù).(1)當時,解不等式;(2)若不等式對任意恒成立,求實數(shù)a的取值范圍.20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標21.(12分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和22.(10分)2020年10月,中共中央辦公廳、國務院辦公廳印發(fā)了《關于全面加強和改進新時代學校體育工作的意見》,某地積極開展中小學健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數(shù),規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學生一分鐘跳繩情況,隨機抽取了100名學生測試,其一分一分鐘跳繩個數(shù)成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學生跳繩成績不及格,求在進行測試的100名學生中跳繩成績不及格的人數(shù)為多少?(2)該學校決定由這次跳繩測試一分鐘跳繩個數(shù)在205以上(包括205)的學生組成“小小教練員"團隊,小明和小華是該團隊的成員,現(xiàn)學校要從該團隊中選派2名同學參加某跳繩比賽,求小明和小華至少有一人被選派的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】如上圖,設AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關鍵是利用中位線定理和相似三角形定理2、C【解析】設出未知數(shù),列出方程組,求出答案.【詳解】設甲、乙、丙分得的米數(shù)為x+d,x,x-d,則,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故選:C3、D【解析】先對函數(shù)求導,由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調(diào)性,從而確定極大值點,然后帶入原函數(shù)即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當,,單調(diào)遞增;時,,單調(diào)遞減;當,,單調(diào)遞增,所以的極大值為故選:D4、C【解析】對求導,研究的單調(diào)性以及極值,再結(jié)合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C5、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D6、A【解析】可由三視圖還原原幾何體,然后根據(jù)題意的邊角關系,完成體積的求解.【詳解】由三視圖還原原幾何體如圖:其中平面,,則該四面體的體積為.故選:A.7、D【解析】根據(jù)空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.8、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.9、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C10、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎題.11、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當且僅當時等號成立)所以故選:A12、B【解析】根據(jù)古典概型概率計算公式,計算出所求的概率.【詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質(zhì)數(shù)的有:17,71,53,故所求事件的概率為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.14、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.15、【解析】由題意得:考點:雙曲線離心率16、##.【解析】由遞推關系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先求出導函數(shù),再根據(jù)x=2是的一個極值點對應x=2是導數(shù)為0的根即可求b的值;(2)根據(jù)(1)的結(jié)論求出函數(shù)的極值點,通過比較極值與端點值的大小從而確定出最大值.【小問1詳解】由題設,.∵x=2是的一個極值點,∴x=2是的一個根,代入解得:.經(jīng)檢驗,滿足題意.【小問2詳解】由(1)知:,則.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+遞減遞增∵當x∈(1,2)時,即在(1,2)上單調(diào)遞減;當x∈(2,3)時,即在(2,3)上單調(diào)遞增.∴當x∈[1,3]時,函數(shù)的最大值為與中的較大者.∴函數(shù)的最大值為.18、(1),;(2).【解析】(1)利用空間向量的坐標運算可求得的坐標,利用向量的模長公式可求得的值;(2)計算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點睛】本題考查空間向量的坐標運算,同時也考查了利用空間向量的數(shù)量積計算向量的夾角,考查計算能力,屬于基礎題.19、(1);(2).【解析】(1)由題設,原不等式等價于,分類討論即可得出結(jié)論;(2)不等式對任意恒成立,即,即可求實數(shù)a的取值范圍.【詳解】(1)當時,原不等式等價于,當時,,解得,即;當時,恒成立,即;當時,,解得,即;綜上,不等式的解集為;(2),,即或,解得,∴a取值范圍是.20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1),;(2),.【解析】(1)根據(jù)的關系可得,根據(jù)等比數(shù)列的定義寫出的通項公式,進而可得的通項公式;(2)利用的關系求的通項公式,結(jié)合(1)結(jié)論可得,再應用分組求和、錯位相消法求的前n項和【小問1詳解】.①當時,,可得當時,.②①-②得,則,而a1-1=1不為零,故是首項為1,公比為2的等比數(shù)列,則∴數(shù)列的通項公式為,【小問2詳解】∵,∴當時,,當時,,又也適合上式,∴,∴,令,,則,又,∴22、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績及其對應的頻率,即可求每分鐘跳繩成績不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個數(shù)在205以上(包括205)的學生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論