北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市第十二中2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.當(dāng)圓的圓心到直線的距離最大時(shí),()A B.C. D.2.△ABC兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.3.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點(diǎn),P是雙曲線上一點(diǎn),且,則()A.2 B.6C.8 D.104.若不等式在上有解,則的最小值是()A.0 B.-2C. D.5.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)且的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長(zhǎng)軸的端點(diǎn),為橢圓短軸的端點(diǎn),,分別為橢圓的左右焦點(diǎn),動(dòng)點(diǎn)滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.6.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn),則的最小值為()A. B.2C. D.37.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或8.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且,則()A. B.C. D.9.現(xiàn)有一根金錘,長(zhǎng)5尺,頭部1尺,重4斤,尾部1尺,重2斤,若該金錘從頭到尾,每一尺的重量構(gòu)成等差數(shù)列,該金錘共重()斤A.6 B.7C.9 D.1510.已知數(shù)列中,,則()A.2 B.C. D.11.函數(shù)的定義域?yàn)?,,?duì)任意,,則的解集為()A. B.C. D.12.變量與的數(shù)據(jù)如表所示,其中缺少了一個(gè)數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.26二、填空題:本題共4小題,每小題5分,共20分。13.歐陽(yáng)修在《賣(mài)油翁》中寫(xiě)道:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)孔入,而錢(qián)不濕,可見(jiàn)“行行出狀元”,賣(mài)油翁的技藝讓人嘆為觀止.若銅錢(qián)是直徑為4cm的圓,中間有邊長(zhǎng)為1cm的正方形孔,若你隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是_______14.已知數(shù)列滿足,且.則數(shù)列的通項(xiàng)公式為_(kāi)______15.已知數(shù)列滿足,則_____________16.i為虛數(shù)單位,復(fù)數(shù)______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知關(guān)于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時(shí)的值.18.(12分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點(diǎn)為棱的中點(diǎn),證明:平面平面;(2)若平面平面,點(diǎn)為棱的中點(diǎn),求直線與平面所成角的正弦值.19.(12分)已知雙曲線的左,右焦點(diǎn)為,離心率為.(1)求雙曲線C的漸近線方程;(2)過(guò)作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點(diǎn),若,求k的值.20.(12分)已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.(1)求動(dòng)點(diǎn)的軌跡方程;(2)若過(guò)點(diǎn)且斜率為的直線與動(dòng)點(diǎn)的軌跡交于、兩點(diǎn),求三角形AOB的面積.21.(12分)設(shè)函數(shù)(1)若曲線在點(diǎn)處的切線方程為,求;(2)求函數(shù)的單調(diào)區(qū)間22.(10分)如圖,在正方體中,為的中點(diǎn),點(diǎn)在棱上(1)若,證明:與平面不垂直;(2)若平面,求平面與平面的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出圓心坐標(biāo)和直線過(guò)定點(diǎn),當(dāng)圓心和定點(diǎn)的連線與直線垂直時(shí)滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因?yàn)閳A的圓心為,半徑,又因?yàn)橹本€過(guò)定點(diǎn)A(-1,1),故當(dāng)與直線垂直時(shí),圓心到直線的距離最大,此時(shí)有,即,解得.故選:C.2、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)?,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.3、C【解析】根據(jù)漸近線可求出a,再由雙曲線定義可求解.【詳解】因?yàn)橹本€是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C4、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點(diǎn)睛】本題主要考查二次不等式能成立問(wèn)題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問(wèn)題,也可以進(jìn)行分情況討論.5、A【解析】由題可得動(dòng)點(diǎn)M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡(jiǎn)得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A6、D【解析】求出拋物線C的準(zhǔn)線l的方程,過(guò)A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點(diǎn)A在拋物線C內(nèi),過(guò)A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點(diǎn)P的點(diǎn),過(guò)作于點(diǎn)N,連PF,AN,,由拋物線定義知,,于是得,即點(diǎn)P是過(guò)A作準(zhǔn)線l的垂線與拋物線C的交點(diǎn)時(shí),取最小值,所以的最小值為3.故選:D7、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題8、D【解析】依題意以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)?,所以的縱坐標(biāo)為18.由,得,故.故選:D.9、D【解析】設(shè)該等差數(shù)列為,其公差為,根據(jù)題意和等差數(shù)列的性質(zhì)可得,進(jìn)而求出結(jié)果.【詳解】設(shè)該等差數(shù)列為,其公差為,由題意知,,由,解得,所以.故選:D10、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開(kāi)始循環(huán),數(shù)列的周期是,所以.故選:A.11、B【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)在上的單調(diào)性,將不等式轉(zhuǎn)化為,利用函數(shù)的單調(diào)性即可求解.【詳解】依題意可設(shè),所以.所以函數(shù)在上單調(diào)遞增,又因?yàn)?所以要使,即,只需要,故選B.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性解不等式,解題的關(guān)鍵就是利用導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造新函數(shù)來(lái)解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.12、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點(diǎn)帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因?yàn)榛貧w直線方程經(jīng)過(guò)樣本點(diǎn)的中心,所以,解得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計(jì)算公式進(jìn)行求解即可.【詳解】因?yàn)殂~錢(qián)的面積為,正方形孔的面積為,所以隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是.故答案為:【點(diǎn)睛】本題考查了幾何概型計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】倒數(shù)型求數(shù)列通項(xiàng)公式,第一步求倒數(shù),第二步構(gòu)造數(shù)列,求通項(xiàng).【詳解】因?yàn)椋?,所以?shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,所以故答案為:.15、【解析】找到數(shù)列的規(guī)律,由此求得.【詳解】依題意,,,所以數(shù)列是以為周期的周期數(shù)列,.故答案為:16、【解析】利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)求解即可.【詳解】故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2),.【解析】(1)利用根與系數(shù)的關(guān)系,得到等式和不等式,最后求出的值;(2)化簡(jiǎn)函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【小問(wèn)1詳解】由題意知:,解得【小問(wèn)2詳解】由(1)知,∴,由對(duì)勾函數(shù)單調(diào)性知在上單調(diào)遞減,∴,即當(dāng),函數(shù)的最小值為18、(1)證明見(jiàn)解析(2)【解析】(1)先證明,,進(jìn)而證明平面,即可證明平面,從而證明平面平面.(2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,用向量法求解即可【小問(wèn)1詳解】因?yàn)闉榈妊苯侨切?,點(diǎn)為棱的中點(diǎn),所以,又因?yàn)?,,所以,又因?yàn)樵谥?,,,所以,所以,所以,又因?yàn)?,所以平面,又因?yàn)闉槠叫兴倪呅危?,所以平面,又因?yàn)槠矫?,所以平面平?【小問(wèn)2詳解】因?yàn)槠矫嫫矫妫矫嫫矫?,,所以平面,又因?yàn)椋渣c(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系.則,,,,所以,,,,設(shè)平面的一個(gè)法向量為,則由,,可得令,得,設(shè)直線與平面所成角為,,所以直線與平面所成角的正弦值為.19、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點(diǎn)為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達(dá)定理可得答案.【小問(wèn)1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問(wèn)2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點(diǎn)為,,由,可知,所以,即,因?yàn)榈姆匠虨?,雙曲線的漸近線方程可寫(xiě)為,由消去y,得,所以,,所以,因?yàn)?,所以,?20、(1)(2)【解析】小問(wèn)1:由拋物線的定義可求得動(dòng)點(diǎn)的軌跡方程;小問(wèn)2:可知直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問(wèn)1詳解】由題意點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以,則,所以動(dòng)點(diǎn)的軌跡方程是.【小問(wèn)2詳解】由已知直線的方程是,設(shè)、,由得,,所以,則,故,21、(1)(2)答案見(jiàn)解析【解析】(1)求出,建立方程關(guān)系,即可求出結(jié)論;(2)對(duì)分類(lèi)討論,求出的單調(diào)區(qū)間.【小問(wèn)1詳解】由于切點(diǎn)在切線上,所以,函數(shù)通過(guò)點(diǎn)又,根據(jù)導(dǎo)數(shù)幾何意義,;【小問(wèn)2詳解】由可知當(dāng)時(shí),則;當(dāng)時(shí),則;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為當(dāng)時(shí),單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.22、(1)證明見(jiàn)解析(2)【解析】(1)設(shè)正方體的棱長(zhǎng)為,以點(diǎn)為坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論