湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省松滋市四中2026屆高一數(shù)學第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知全集,集合,,它們的關系如圖(Venn圖)所示,則陰影部分表示的集合為()A. B.C. D.2.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°3.若,則()A. B.aC.2a D.4a4.已知sinα+cosα=,則sin的值為()A.- B.C.- D.5.已知圓錐的底面半徑為,當圓錐的體積為時,該圓錐的母線與底面所成角的正弦值為()A. B.C. D.6.甲乙兩名同學6次考試的成績統(tǒng)計如右圖,甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為則A. B.C. D.7.在下列各圖中,每個圖的兩個變量具有線性相關關系的圖是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)8.已知函數(shù)的定義域為,命題為奇函數(shù),命題,那么是的()A.充分必要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件9.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.10.下列函數(shù)中,以為最小正周期,且在上單調遞增的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則________12.若、是方程的兩個根,則__________.13.將函數(shù)圖象上的所有點向右平行移動個單位長度,則所得圖象的函數(shù)解析式為___________.14.若不等式對一切恒成立,則a的取值范圍是______________.15.已知是定義在上的奇函數(shù),當時,,則時,__________16.若,則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷在區(qū)間上的單調性,并用定義證明;(2)判斷的奇偶性,并求在區(qū)間上的值域.18.已知函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1(1)求實數(shù)a的值;(2)若關于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求實數(shù)k的取值范圍;(3)若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求實數(shù)m的取值范圍.(附:函數(shù)g(t)=t在(0,1)單調遞減,在(1,+∞)單調遞增.)19.如圖,在正方體中,為棱、的三等分點(靠近A點).求證:(1)平面;(2)求證:平面平面.20.如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(1)求證:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.21.已知(1)求的值;(2)若是第三象限的角,化簡三角式,并求值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)所給關系圖(Venn圖),可知是求,由此可求得答案.【詳解】根據(jù)題意可知,陰影部分表示的是,故,故選:C.2、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A3、A【解析】利用對數(shù)的運算可求解.【詳解】,故選:A4、C【解析】應用輔助角公式可得,再應用誘導公式求目標三角函數(shù)的值.【詳解】由題設,,而.故選:C5、A【解析】首先理解圓錐體中母線與底面所成角的正弦值為它的高與母線的比值,結合圓錐的體積公式及已知條件即可求出正弦值.【詳解】如圖,根據(jù)圓錐的性質得底面圓,所以即為母線與底面所成角,設圓錐的高為,則由題意,有,所以,所以母線的長為,則圓錐的母線與底面所成角的正弦值為.故選:A【點睛】本題考查了圓錐的體積,線面角的概念,考查運算求解能力,是基礎題.本題解題的關鍵在于根據(jù)圓錐的性質得即為母線與底面所成角,再根據(jù)幾何關系求解.6、C【解析】利用甲、乙兩名同學6次考試的成績統(tǒng)計直接求解【詳解】由甲乙兩名同學6次考試的成績統(tǒng)計圖知:甲組數(shù)據(jù)靠上,乙組數(shù)據(jù)靠下,甲組數(shù)據(jù)相對集中,乙組數(shù)據(jù)相對分散分散布,由甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為得,故選【點睛】本題考查命題真假的判斷,考查平均數(shù)、的定義和性質等基礎知識,考查運算求解能力,是基礎題7、D【解析】由線性相關的定義可知:(2)中兩變量線性正相關,(3)中兩變量線性負相關,故選:D考點:變量線性相關問題8、C【解析】根據(jù)奇函數(shù)的性質及命題充分必要性的概念直接判斷.【詳解】為奇函數(shù),則,但,無法得函數(shù)為奇函數(shù),例如,滿足,但是為偶函數(shù),所以是的充分不必要條件,故選:C.9、D【解析】利用二次函數(shù)單調性,列式求解作答.【詳解】函數(shù)的單調遞增區(qū)間是,依題意,,所以,即實數(shù)的取值范圍是.故選:D10、D【解析】根據(jù)最小正周期判斷AC,根據(jù)單調性排除B,進而得答案.【詳解】解:對于AC選項,,的最小正周期為,故錯誤;對于B選項,最小正周期為,在區(qū)間上單調遞減,故錯誤;對于D選項,最小正周期為,當時,為單調遞增函數(shù),故正確.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】利用誘導公式即得.【詳解】∵,∴.故答案為:.12、【解析】由一元二次方程根與系數(shù)的關系可得,,再由

,運算求得結果【詳解】、是方程的兩個根,,,,,故答案為:13、【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得到結果【詳解】將函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)解析式,即.故答案為:.14、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進行求解.【詳解】當時,則化為(不恒成立,舍),當時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.15、【解析】∵函數(shù)f(x)為奇函數(shù)∴f(-x)=-f(x)∵當x>0時,f(x)=log2x∴當x<0時,f(x)=-f(-x)=-log2(-x).故答案為.點睛:本題根據(jù)函數(shù)為奇函數(shù)可推斷出f(-x)=-f(x)進而根據(jù)x>0時函數(shù)的解析式即可求得x<0時,函數(shù)的解析式16、【解析】整理代數(shù)式滿足運用基本不等式結構后,用基本不等式求最小值.【詳解】∵∴當且僅當,時,取最小值.故答案為:【點睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,則要改變求最值的方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在區(qū)間上單調遞增,證明見解析(2)函數(shù)為奇函數(shù),在區(qū)間上的值域為【解析】(1)利用定義法證明函數(shù)單調性;(2)先得到定義域關于原點對稱,結合得到函數(shù)為奇函數(shù),利用第一問的單調性求出在區(qū)間上的值域.【小問1詳解】在區(qū)間上單調遞增,證明如下:,,且,有.因為,,且,所以,.于是,即.故在區(qū)間上單調遞增.【小問2詳解】的定義域為.因為,所以為奇函數(shù).由(1)得在區(qū)間上單調遞增,結合奇偶性可得在區(qū)間上單調遞增.又因為,,所以在區(qū)間上的值域為.18、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函數(shù)的圖像與性質即可求解.(2)采用換元把方程化為t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分離參數(shù)法,化為t與2+2k在[1,2]上有交點即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把問題轉化為1≤m2﹣2mp﹣2恒成立,研究關于的函數(shù)h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【詳解】(1)函數(shù)f(x)=x2﹣2x+1+a對稱軸為x=1,所以區(qū)間[1,2]上f(x)min=f(1)=a,由根據(jù)題意函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若關于x的方程f(log2x)+1﹣2k?log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]則f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函數(shù)g(t)=t,在(0,1)單調遞減,在(1,+∞)單調遞增所以g(1)≤2+2k≤g(2),即2≤2+2t,解得0≤t(3)若對任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,則1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3【點睛】本題主要考查了二次函數(shù)的圖像與性質、函數(shù)與方程以及不等式恒成立問題,綜合性比較強,需有較強的邏輯推理能力,屬于難題.19、(1)見解析;(2)見解析.【解析】(1)欲證:平面,根據(jù)直線與平面平行的判定定理可知,只需證與平面內一條直線平行,連接,可知,則,又平面,平面,滿足定理所需條件;(2)欲證:平面平面,根據(jù)面面垂直的判定定理可知,在平面內一條直線與平面垂直,而平面,平面,則,,滿足線面垂直的判定定理則平面,而平面,滿足定理所需條件【詳解】(1)證明:連接,在正方體中,對角線,又因為、為棱、的三等分點,所以,則,又平面,平面,所以平面(2)因為在正方體中,因為平面,而平面,所以,又因為在正方形中,,而,平面,平面,所以平面,又因為平面,所以平面平面【點睛】本題主要考查線面平行的判定定理和線面垂直的判定定理,以及考查對基礎知識的綜合應用能力和基本定理的掌握能力20、(1)見解析(2)見解析【解析】解析:(1)在三棱臺DEFABC中,BC=2EF,H為BC的中點,BH∥EF,BH=EF,四邊形BHFE為平行四邊形,有BE∥HF.BE∥平面FGH在△ABC中,G為AC的中點,H為BC的中點,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)連接HE,EGG,H分別為AC,BC的中點,GH∥AB.AB⊥BC,GH⊥BC.又H為BC的中點,EF∥HC,EF=HC,四邊形EFCH是平行四邊形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH?平面EGH,HE∩GH=H,BC⊥平面EG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論