2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆浙江省湖州市長(zhǎng)興縣、德清縣、安吉縣高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過(guò)第四象限.在它的逆命題、否命題、逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是()A.3 B.2C.1 D.02.在空間直角坐標(biāo)系中,,,平面的一個(gè)法向量為,則平面與平面夾角的正弦值為()A. B.C. D.3.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.24.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則5.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.6.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.27.已知實(shí)數(shù)滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-18.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)為,則()A.-4 B.-10C.4 D.109.命題“?x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤510.已知橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若、、是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)到軸的距離為A B.4C. D.11.已知點(diǎn),動(dòng)點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓12.袋子中有四個(gè)小球,分別寫有“文、明、中、國(guó)”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國(guó)”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國(guó)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:方程表示焦點(diǎn)在軸上的橢圓;命題:方程表示雙曲線.若為真,則實(shí)數(shù)的取值范圍為_(kāi)_____.14.設(shè)正項(xiàng)等比數(shù)列的公比為,前項(xiàng)和為,若,則_______________.15.已知一個(gè)樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個(gè)3,一個(gè)5,一個(gè)7得到一個(gè)新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)16.若直線與直線平行,且原點(diǎn)到直線的距離為,則直線的方程為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過(guò)曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.18.(12分)如圖,矩形和菱形所在的平面相互垂直,,為的中點(diǎn).(1)求證:平面;(2)若,求二面角的余弦值.19.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過(guò)點(diǎn)的直線與相切,求的方程.20.(12分)已知向量,(1)求;(2)求;(3)若(),求的值21.(12分)甲、乙等6個(gè)班級(jí)參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機(jī)確定各班級(jí)的出場(chǎng)順序(序號(hào)為1,2,…,6),求:(1)甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;(2)甲、乙兩班級(jí)之間的演出班級(jí)(不含甲乙)個(gè)數(shù)X的分布列與期望22.(10分)已知函數(shù),其中(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)①若恒成立,求的最小值;②證明:,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過(guò)第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過(guò)第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個(gè)命題中,真命題有一個(gè).選C2、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計(jì)算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A3、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.4、C【解析】根據(jù)逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結(jié)論作條件、否定的條件作結(jié)論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C5、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問(wèn)題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.6、B【解析】根據(jù),利用等比數(shù)列的通項(xiàng)公式求解.【詳解】因?yàn)?,所以,則,解得,所以.故選:B7、C【解析】把看成動(dòng)點(diǎn)與所確定的直線的斜率,動(dòng)點(diǎn)在所給曲線上.【詳解】就是點(diǎn),所確定的直線的斜率,而在上,因?yàn)椋?故選:C8、A【解析】根據(jù)關(guān)于平面對(duì)稱的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對(duì)稱的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對(duì)稱的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對(duì)稱,考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題9、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項(xiàng)不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個(gè)充分不必要條件即為集合的真子集,由選擇項(xiàng)可知C符合題意.故選:C10、D【解析】設(shè)橢圓短軸的一個(gè)端點(diǎn)為根據(jù)橢圓方程求得c,進(jìn)而判斷出,即得或令,進(jìn)而可得點(diǎn)P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個(gè)端點(diǎn)為M由于,,;,只能或令,得,故選D【點(diǎn)睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實(shí)際運(yùn)算能力是基礎(chǔ)題11、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.12、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.14、【解析】由可知公比,所以直接利用等比數(shù)列前項(xiàng)和公式化簡(jiǎn),即可求出【詳解】解:因?yàn)?,所以,所以,所以,化?jiǎn)得,因?yàn)榈缺葦?shù)列的各項(xiàng)為正數(shù),所以,所以,故答案為:【點(diǎn)睛】此題考查等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題15、①.不變②.變大【解析】通過(guò)計(jì)算平均數(shù)和方差來(lái)確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大16、【解析】可設(shè)直線的方程為,利用點(diǎn)到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點(diǎn)到直線的距離為,解得,所以直線的方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用雙曲線的標(biāo)準(zhǔn)方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設(shè)而不求法”和弦長(zhǎng)公式求弦長(zhǎng).【小問(wèn)1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問(wèn)2詳解】當(dāng)m=0時(shí),曲線C的方程為,可得,所以右焦點(diǎn),由題意可得直線l的方程為:.設(shè),聯(lián)立整理可得:,可得:所以弦長(zhǎng),所以18、(1)證明見(jiàn)解析;(2).【解析】(1)利用面面垂直和線面垂直的性質(zhì)定理可證得;由菱形邊長(zhǎng)和角度的關(guān)系可證得;利用線面垂直的判定定理可證得結(jié)論;(2)以為坐標(biāo)原點(diǎn)建立起空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值.詳解】(1)平面平面,平面平面,且平面,平面,平面,,四邊形為菱形且為中點(diǎn),,又,,又,,平面,,平面.(2)以為坐標(biāo)原點(diǎn)可建立如下圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,,則,,,設(shè)平面的法向量,則,令,則,,,設(shè)平面的法向量,則,令,則,,,,二面角為鈍二面角,二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中線面垂直關(guān)系的證明、空間向量法求解二面角的問(wèn)題;涉及到面面垂直的性質(zhì)定理、線面垂直的判定與性質(zhì)定理的應(yīng)用,屬于常考題型.19、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問(wèn)1詳解】圓的標(biāo)準(zhǔn)方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問(wèn)2詳解】由題意可知直線的斜率存在,設(shè)直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.20、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標(biāo)表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運(yùn)算律即可得解.【小問(wèn)1詳解】解:;【小問(wèn)2詳解】解:;【小問(wèn)3詳解】解:因?yàn)椋?,即,解?21、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率,進(jìn)而求出答案;(2)求出X的可能取值及相應(yīng)的概率,寫出分布列,求出期望值.【小問(wèn)1詳解】由題意得:甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率為,故甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;【小問(wèn)2詳解】X的可能取值為0,1,2,3,4,,,,故分布列為:X01234p數(shù)學(xué)期望為22、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)①1;②證明見(jiàn)解析【

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論