版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆浙江省麗水學院附屬高級中學高一上數(shù)學期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“,是4的倍數(shù)”的否定為()A.,是4的倍數(shù) B.,不是4的倍數(shù)C.,不是4的倍數(shù) D.,不是4的倍數(shù)2.用斜二測畫法畫一個水平放置平面圖形的直觀圖為如圖所示的直角梯形,其中BC=AB=2,則原平面圖形的面積為()A. B.C. D.3.終邊在x軸上的角的集合為()A. B.C. D.4.下列說法不正確的是A.方程有實根函數(shù)有零點B.有兩個不同的實根C.函數(shù)在上滿足,則在內有零點D.單調函數(shù)若有零點,至多有一個5.已知函數(shù)的部分圖象如圖所示,則的解析式為()A. B.C. D.6.已知奇函數(shù)fx在R上是增函數(shù),若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b7.“”是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.如圖所示的是水平放置的三角形直觀圖,D′是△A′B′C′中B′C′邊上的一點,且D′離C′比D′離B′近,又A′D′∥y′軸,那么原△ABC的AB、AD、AC三條線段中A.最長的是AB,最短的是ACB.最長的是AC,最短的是ABC.最長的是AB,最短的是ADD.最長的是AD,最短的是AC9.已知集合,則()A B.C. D.10.已知集合,則(
)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點A(3,2),B(﹣2,a),C(8,12)在同一條直線上,則a=_____.12._____13.化簡求值(1)化簡(2)已知:,求值14.已知點,,在函數(shù)的圖象上,如圖,若,則______.15.函數(shù)的反函數(shù)為___________.16.對,不等式恒成立,則m的取值范圍是___________;若在上有解,則m的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的定義域為R,其圖像關于原點對稱,且當時,(1)請補全函數(shù)的圖像,并由圖像寫出函數(shù)在R上的單調遞減區(qū)間;(2)若,,求的值18.已知冪函數(shù)的圖象經過點(1)求的解析式;(2)設,(i)利用定義證明函數(shù)在區(qū)間上單調遞增(ii)若在上恒成立,求t的取值范圍19.已知函數(shù)求的最小正周期以及圖象的對稱軸方程當時,求函數(shù)的最大值和最小值20.已知函數(shù)(1)求的值(2)求函數(shù)的最小正周期及其圖像的對稱軸方程(3)對于任意,均有成立,求實數(shù)的取值范圍21.已知A,B,C為的內角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)特稱量詞命題的否定是全稱量詞命題即可求解【詳解】因為特稱量詞命題的否定是全稱量詞命題,所以命題“,是4的倍數(shù)”的否定為“,不是4的倍數(shù)”故選:B2、C【解析】先求出直觀圖中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原圖形是一個直角梯形和各個邊長及高,直接求面積即可.【詳解】直觀圖中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原來的平面圖形上底長為2,下底為4,高為的直角梯形,∴該平面圖形面積為.故選:C3、B【解析】利用任意角的性質即可得到結果【詳解】終邊在x軸上,可能為x軸正半軸或負半軸,所以可得角,故選B.【點睛】本題考查任意角的定義,屬于基礎題.4、C【解析】A選項,根據(jù)函數(shù)零點定義進行判斷;B選項,由根的判別式進行求解;C選項,由零點存在性定理及舉出反例進行說明;D選項,由函數(shù)單調性定義及零點存在性定理進行判斷.【詳解】A.根據(jù)函數(shù)零點的定義可知:方程有實根?函數(shù)有零點,∴A正確B.方程對應判別式,∴有兩個不同實根,∴B正確C.根據(jù)根的存在性定理可知,函數(shù)必須是連續(xù)函數(shù),否則不一定成立,比如函數(shù),滿足條件,但在內沒有零點,∴C錯誤D.若函數(shù)為單調函數(shù),則根據(jù)函數(shù)單調性的定義和函數(shù)零點的定義可知,函數(shù)和x軸至多有一個交點,∴單調函數(shù)若有零點,則至多有一個,∴D正確故選:C5、B【解析】根據(jù)圖像得到,,計算排除得到答案.【詳解】根據(jù)圖像知選項:,排除;D選項:,排除;根據(jù)圖像知選項:,排除;故選:【點睛】本題考查了三角函數(shù)圖像的識別,計算特殊值可以快速排除選項,是解題的關鍵.6、C【解析】由題意:a=f-且:log2據(jù)此:log2結合函數(shù)的單調性有:flog即a>b>c,c<b<a.本題選擇C選項.【考點】指數(shù)、對數(shù)、函數(shù)的單調性【名師點睛】比較大小是高考常見題,指數(shù)式、對數(shù)式的比較大小要結合指數(shù)函數(shù)、對數(shù)函數(shù),借助指數(shù)函數(shù)和對數(shù)函數(shù)的圖象,利用函數(shù)的單調性進行比較大小,特別是靈活利用函數(shù)的奇偶性和單調性數(shù)形結合不僅能比較大小,還可以解不等式.7、A【解析】先看時,是否成立,即判斷充分性;再看成立時,能否推出,即判斷必要性,由此可得答案.【詳解】當時,,即“”是的充分條件;當時,,則或,則或,即成立,推不出一定成立,故“”不是的必要條件,故選:A.8、C【解析】由斜二測畫法得到原三角形,結合其幾何特征易得答案.【詳解】由題意得到原△ABC的平面圖為:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三條線段中最長的是AB,最短的是AD故選C【點睛】本題考查了斜二測畫法,考查三角形中三條線段長的大小的比較,屬于基礎題9、D【解析】利用元素與集合的關系判斷即可.【詳解】由集合,即集合是所有的偶數(shù)構成的集合.所以,,,故選:D10、B【解析】直接利用兩個集合的交集的定義求得M∩N【詳解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},則M∩N={x|-1≤x<2},故選B【點睛】本題主要考查兩個集合的交集的定義和求法,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、﹣8【解析】根據(jù)AC的斜率等于AB的斜率得到,解方程即得解.【詳解】由題意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案為:-8【點睛】本題主要考查斜率的計算和三點共線,意在考查學生對這些知識的理解掌握水平.12、【解析】利用三角函數(shù)公式化簡,即可求出結果.【詳解】,故答案為:.【點睛】本題主要考查運用三角函數(shù)公式化簡求值,倍角公式的應用,考查運算求解能力.13、(1)(2)【解析】(1)利用誘導公式化簡即可;(2)先進行弦化切,把代入即可求解.【小問1詳解】.【小問2詳解】因為,所以.所以.又,所以.14、【解析】設的中點為,連接,由條件判斷是等邊三角形,并且求出和的長度,即根據(jù)周期求.【詳解】設的中點為,連接,,,且,是等邊三角形,并且的高是,,即,,即,解得:.故答案為:【點睛】本題考查根據(jù)三角函數(shù)的周期求參數(shù),意在考查數(shù)形結合分析問題和解決問題的能力,屬于基礎題型,本題的關鍵是利用直角三角形的性質和三角函數(shù)的性質判斷的等邊三角形.15、【解析】由題設可得,即可得反函數(shù).【詳解】由,可得,∴反函數(shù)為.故答案為:.16、①.②.【解析】(1)根據(jù)一元二次函數(shù)的圖象,考慮開口方向和判別式,即可得到答案;(2)利用參變分離,將問題轉化為不等式在上有解;【詳解】(1)關于x的不等式函數(shù)對于任意實數(shù)x恒成立,則,解得m的取值范圍是.(2)若在上有解,則在上有解,易知當時,當時,此時記,則,,在上單調遞減,故,綜上可知,,故m的取值范圍是.故答案為:;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)作圖見解析;單調減區(qū)間是和(2)0【解析】(1)由圖象關于原點對稱,補出另一部分,結合圖可求出函數(shù)的單調減區(qū)間,(2)先求出的值,然后根據(jù)函數(shù)的奇偶性和解析式求解即可【小問1詳解】因為函數(shù)的圖像關于原點對稱,所以是R上的奇函數(shù),故由對稱性畫出圖像在R上的單調減區(qū)間是和【小問2詳解】,所以18、(1)(2)(i)證明見解析;(ii)【解析】(1)設,然后代點求解即可;(2)利用定義證明函數(shù)在區(qū)間上單調遞增即可,然后可得在上,,然后可求出t的取值范圍【小問1詳解】設,則,得,所以【小問2詳解】(i)由(1)得任取,,且,則因為,所以,,所以,即所以函數(shù)在上單調遞增(ii)由(i)知在單調遞增,所以在上,因為在上恒成立,所以,解得19、(1)最小正周期為,對稱軸方程為(2)最小值0;最大值【解析】(1)先根據(jù)二倍角公式以及配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質求周期以及圖象的對稱軸方程(2)先根據(jù)自變量范圍,確定范圍,再根據(jù)正弦函數(shù)圖像得最值試題解析:解:的最小正周期為由得的對稱軸方程為當時,當時,即時,函數(shù)f(x)取得最小值0;當時,即時,函數(shù)f(x)取得最大值20、(1)0;(2);(3).【解析】(1)由三角函數(shù)的和差公式,倍角公式,輔助角公式化簡原式,帶入求值即可.(2)由化簡后的表達式代入公式即可求的.(3)恒成立問題,第一步求出函數(shù)的單調區(qū)間,結合函數(shù)性質即可解得.【小問1詳解】化簡如下:.【小問2詳解】由(1)可知,周期,對稱軸.【小問3詳解】,所以任意,均有,解出函數(shù)的單調性增區(qū)間,,所以在遞增,成立,遞減,由對稱性可知,所以,所以21、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的正切公式及均值不等式求解;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年宣威市復興街道辦事處公開招聘公益性崗位工作人員(3人)考試筆試參考題庫附答案解析
- 2025吉林白城市鎮(zhèn)賚縣事業(yè)單位招聘(含專項招聘高校畢業(yè)生)附基層治理專干47人考試筆試參考題庫附答案解析
- 2025廣西壯族自治區(qū)文化和旅游廳幼兒園保育員招聘1人考試筆試模擬試題及答案解析
- 項目管理崗位面試題及答案
- 2025年寧波市鎮(zhèn)海區(qū)龍賽醫(yī)療集團招聘編外工作人員2人筆試考試備考試題及答案解析
- 2025福建廈門清大海峽私募基金管理有限公司招聘1人考試筆試參考題庫附答案解析
- 2024年普蘭縣幼兒園教師招教考試備考題庫必考題
- 法務專員崗位面試全攻略及答案參考
- 天津港董事崗位能力考試題集含答案
- 通信行業(yè)面試題解析運營商客服崗位面試全攻略
- 鋼板租賃合同條款(2025版)
- 輻射性白內障的發(fā)現(xiàn)與研究
- 珠海市產業(yè)和招商扶持政策匯編(2025年版)
- 國開機考 答案2人力資源管理2025-06-21
- 物理●山東卷丨2024年山東省普通高中學業(yè)水平等級考試物理試卷及答案
- 提升會計職業(yè)素養(yǎng)的試題及答案
- 電動吸盤出租合同協(xié)議
- 胃穿孔的相關試題及答案
- 制藥行業(yè)清潔生產標準
- 教育學原理知到智慧樹章節(jié)測試課后答案2024年秋浙江師范大學
- 醫(yī)學影像技術技士題庫
評論
0/150
提交評論