版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市海淀區(qū)知春里中學(xué)2026屆高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.2.上海世博會(huì)期間,某日13時(shí)至21時(shí)累計(jì)入園人數(shù)的折線圖如圖所示,那么在13時(shí)~14時(shí),14時(shí)~15時(shí),…,20時(shí)~21時(shí)八個(gè)時(shí)段中,入園人數(shù)最多的時(shí)段是()A.13時(shí)~14時(shí) B.16時(shí)~17時(shí)C.18時(shí)~19時(shí) D.19時(shí)~20時(shí)3.當(dāng)圓的圓心到直線的距離最大時(shí),()A B.C. D.4.已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.5.?dāng)?shù)列中,滿足,,設(shè),則()A. B.C. D.6.如圖,用隨機(jī)模擬方法近似估計(jì)在邊長為e(e為自然對數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機(jī)數(shù)和,因此得到1000個(gè)點(diǎn)對,再統(tǒng)計(jì)出落在該陰影部分內(nèi)的點(diǎn)數(shù)為260個(gè),則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.927.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要8.已知雙曲線,過點(diǎn)作直線l,若l與該雙曲線只有一個(gè)公共點(diǎn),這樣的直線條數(shù)為()A.1 B.2C.3 D.49.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.4510.設(shè)是等差數(shù)列,是其公差,是其前n項(xiàng)的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值11.已知數(shù)列滿足:,數(shù)列的前n項(xiàng)和為,若恒成立,則的取值范圍是()A. B.C. D.12.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線與坐標(biāo)軸圍成的三角形面積為___________.14.寫出一個(gè)數(shù)列的通項(xiàng)公式____________,使它同時(shí)滿足下列條件:①,②,其中是數(shù)列的前項(xiàng)和.(寫出滿足條件的一個(gè)答案即可)15.已知P,A,B,C四點(diǎn)共面,對空間任意一點(diǎn)O,若,則______.16.設(shè)函數(shù)(1)求的最小正周期和的最大值;(2)已知銳角的內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,若,且,求的面積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓M:的離心率為,左頂點(diǎn)A到左焦點(diǎn)F的距離為1,橢圓M上一點(diǎn)B位于第一象限,點(diǎn)B與點(diǎn)C關(guān)于原點(diǎn)對稱,直線CF與橢圓M的另一交點(diǎn)為D(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)設(shè)直線AD的斜率為,直線AB的斜率為.求證:為定值18.(12分)已知三點(diǎn)共線,其中是數(shù)列中的第n項(xiàng).(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)如圖,四邊形為矩形,,,為的中點(diǎn),與交于點(diǎn),平面.(1)若,求與所成角的余弦值;(2)若,求直線與平面所成角的正弦值.20.(12分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若與相交于A、兩點(diǎn),設(shè),求.22.(10分)如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn)(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)或且非命題的真假進(jìn)行判斷即可.【詳解】當(dāng),故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A2、B【解析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【詳解】結(jié)合函數(shù)的圖象可知,在13時(shí)~14時(shí),14時(shí)~15時(shí),…,20時(shí)~21時(shí)八個(gè)時(shí)段中,圖象變化最快的為16到17點(diǎn)之間故選:B.【點(diǎn)睛】本題考查折線統(tǒng)計(jì)圖的實(shí)際應(yīng)用,屬于基礎(chǔ)題.3、C【解析】求出圓心坐標(biāo)和直線過定點(diǎn),當(dāng)圓心和定點(diǎn)的連線與直線垂直時(shí)滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因?yàn)閳A的圓心為,半徑,又因?yàn)橹本€過定點(diǎn)A(-1,1),故當(dāng)與直線垂直時(shí),圓心到直線的距離最大,此時(shí)有,即,解得.故選:C.4、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.5、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因?yàn)椋?,所以,,,因此故選C【點(diǎn)睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學(xué)生合情推理的意識(shí)和數(shù)學(xué)建模能力6、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.7、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因?yàn)榉匠瘫硎緳E圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯(cuò)點(diǎn)警示:漏掉,本題屬于基礎(chǔ)題.8、D【解析】先確定雙曲線的右頂點(diǎn),再分垂直軸、與軸不垂直兩種情況討論,當(dāng)與軸不垂直時(shí),可設(shè)直線方程為,聯(lián)立直線與拋物線方程,消元整理,再分、兩種情況討論,即可得解【詳解】解:根據(jù)雙曲線方程可知右頂點(diǎn)為,使與有且只有一個(gè)公共點(diǎn)情況為:①當(dāng)垂直軸時(shí),此時(shí)過點(diǎn)的直線方程為,與雙曲線只有一個(gè)公共點(diǎn),②當(dāng)與軸不垂直時(shí),可設(shè)直線方程為聯(lián)立方程可得當(dāng)即時(shí),方程只有一個(gè)根,此時(shí)直線與雙曲線只有一個(gè)公共點(diǎn),當(dāng)時(shí),,整理可得即故選:D9、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,則.故選:B.10、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項(xiàng)的和的性質(zhì)可判斷每個(gè)選項(xiàng)的正誤,進(jìn)而可得正確選項(xiàng).【詳解】由可得,由可得,故選項(xiàng)B正確;由可得,因?yàn)楣?,故選項(xiàng)A正確,,所以,故選項(xiàng)C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項(xiàng)D正確;所以選項(xiàng)C不正確,故選:C11、D【解析】由于,所以利用裂項(xiàng)相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價(jià)于,即恒成立,化簡得到,因?yàn)椋?dāng)且僅當(dāng),即時(shí)取等號(hào),所以故選:D12、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導(dǎo)數(shù),得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當(dāng)時(shí),,所以切線方程為,即;令可得,令可得;所以切線與坐標(biāo)軸圍成的三角形面積為.故答案為:.14、(答案合理即可)【解析】當(dāng)時(shí)滿足,利用作差比較法即可證明.【詳解】解:當(dāng)時(shí)滿足條件①②,證明如下:因?yàn)椋?;?dāng)時(shí),;當(dāng)時(shí),;綜上,.故答案為:(答案合理即可).15、【解析】由條件可得存在實(shí)數(shù),使得,再用向量表示出向量,即可得出答案.詳解】P,A,B,C四點(diǎn)共面,則存在實(shí)數(shù),使得所以即所以,解得故答案為:16、(1)的最小正周期為,的最大值為1(2)【解析】(1)直接根據(jù)的表達(dá)式和正弦函數(shù)的性質(zhì)可得到的最小正周期和最大值;(2)先根據(jù)求得角的大小為,然后在中利用余弦定理求得,最后根據(jù)三角形的面積公式即可【小問1詳解】已知?jiǎng)t的最小正周期為:則的最大值為:【小問2詳解】由可得:()或()又為銳角,則可得:.在中,由余弦定理可得:,即又,解得:則的面積為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結(jié)合橢圓的性質(zhì)進(jìn)行求解即可;(2)設(shè)出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結(jié)合一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設(shè),,則,CF:聯(lián)立∴,∴【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.18、(1)(2)【解析】(1)由三點(diǎn)共線可知斜率相等,即可得出答案;(2)由題可得,利用錯(cuò)位相減法即可求出答案.【小問1詳解】三點(diǎn)共線,【小問2詳解】①②①—②得19、(1)(2)【解析】(1)以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,利用空間向量法可求得與所成角的余弦值;(2)計(jì)算出平面的法向量,利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】解:如圖,以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,,,則,則,故,因?yàn)槠矫妫矫?,則,若,則,故、、、,則,,.因此,若,則與所成角的余弦值為.【小問2詳解】解:若,則、,,,,設(shè)平面的法向量為,則,取,可得,,所以直線與平面所成角的正弦值為.20、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點(diǎn),分別以,,方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個(gè)法向量和平面DCM的一個(gè)法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點(diǎn),分別以,,的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個(gè)法向量,則,不妨令,可得設(shè)為平面DCM的一個(gè)法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為21、(1)曲線的普通方程為;曲線的直角坐標(biāo)方程為(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系式把參數(shù)方程和極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;(2)易得滿足直線的方程,轉(zhuǎn)化為參數(shù)方程,代入曲線的普通方程,再利用韋達(dá)定理結(jié)合弦長公式即可得出答案.【小問1詳解】解:曲線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)化為普通方程為,曲線的極坐標(biāo)方程為,即,根據(jù),轉(zhuǎn)化為直角坐標(biāo)方程為;【小問2詳解】解:因?yàn)闈M足直線的方程,將轉(zhuǎn)化為參數(shù)方程為(為參數(shù)),代入,得,設(shè)A、兩點(diǎn)的參數(shù)分別為,則,所以.22、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣東深圳北理莫斯科大學(xué)材料科學(xué)系微流控校企聯(lián)合實(shí)驗(yàn)室招聘考試重點(diǎn)試題及答案解析
- 開發(fā)廊合同范本
- 崗位保密協(xié)議書
- 委托征收協(xié)議書
- 意向團(tuán)購協(xié)議書
- 資金托底協(xié)議書
- 小學(xué)分手協(xié)議書
- 裝燈施工協(xié)議書
- 賬務(wù)平攤協(xié)議書
- 志愿星級(jí)協(xié)議書
- 月子會(huì)所的禮儀培訓(xùn)課件
- 乳腺癌靶向治療藥物研究進(jìn)展
- 墻繪施工合同協(xié)議書
- 2026年日歷表(含農(nóng)歷 全年共有365天)
- 國家開放大學(xué)行管??啤缎姓M織學(xué)》期末紙質(zhì)考試總題庫(2025春期版)
- 中國慢性冠脈綜合征患者診斷及管理指南2024版解讀
- iso28000-2022供應(yīng)鏈安全管理手冊程序文件表單一整套
- 吟誦古詩課程設(shè)計(jì)
- 2024年保安員證考試題庫及答案(共130題)
- 2024年中國紅芪市場調(diào)查研究報(bào)告
- NB-T42167-2018預(yù)制艙式二次組合設(shè)備技術(shù)要求
評論
0/150
提交評論