2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆湖南省桃花源一中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.42.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.3.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預(yù)防該疾病的效果,進行動物試驗,得到如下列聯(lián)表:患病未患病總計服用藥104555未服藥203050總計3075105下列說法正確的是()參考數(shù)據(jù):,0.050.013.8416.635A.有95%的把握認(rèn)為藥物有效B.有95%的把握認(rèn)為藥物無效C.在犯錯誤的概率不超過0.05的前提下認(rèn)為藥物無效D.在犯錯誤的概率不超過0.01的前提下認(rèn)為藥物有效4.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形5.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.7.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.8.函數(shù)的部分圖像為()A. B.C. D.9.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.136210.若橢圓的弦恰好被點平分,則所在的直線方程為()A. B.C. D.11.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.6012.設(shè)雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標(biāo)原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,的直線方程(一般式)為___________.14.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.15.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________16.傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).用一點(或一個小石子)代表1,兩點(或兩個小石子)代表2,三點(或三個小石子)代表3,…他們研究了各種平面數(shù)(包括三角形數(shù)、正方形數(shù)、長方形數(shù)、五邊形數(shù)、六邊形數(shù)等等)和立體數(shù)(包括立方數(shù)、棱錐數(shù)等等).如前四個四棱錐數(shù)為第n個四棱錐數(shù)為1+4+9+…+n2=.中國古代也有類似的研究,如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球,…若一個“三角垛”共有20層,則第6層有____個球,這個“三角垛”共有______個球三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的方程為,雙曲線的左、右焦點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為原點),求的取值范圍18.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.19.(12分)在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值20.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥面ABCD,E為PD的中點.(1)證明:PB∥面AEC;(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求點A到平面PBC的距離.21.(12分)已知函數(shù),曲線在處的切線方程為.(Ⅰ)求實數(shù),的值;(Ⅱ)求在區(qū)間上的最值.22.(10分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標(biāo)原點,當(dāng)m為何值時,=0.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.2、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應(yīng)滿足,解得,所以實數(shù)的取值范圍是故選:A3、A【解析】根據(jù)列聯(lián)表計算,對照臨界值即可得出結(jié)論【詳解】根據(jù)列聯(lián)表,計算,由臨界值表可知,有95%的把握認(rèn)為藥物有效,A正確故選:A4、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計算能力,屬于基礎(chǔ)題5、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A6、B【解析】設(shè)公共焦點為,推導(dǎo)出,可得出,進而可求得、的值.【詳解】設(shè)公共焦點為,則,則,即,故,即,,故選:B7、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.8、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當(dāng)時,,,當(dāng)時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D9、B【解析】觀察前4項可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B10、D【解析】判斷點M與橢圓的位置關(guān)系,再借助點差法求出直線AB的斜率即可計算作答.【詳解】顯然點橢圓內(nèi),設(shè)點,依題意,,兩式相減得:,而弦恰好被點平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D11、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.12、A【解析】由給定條件寫出點A,F(xiàn)坐標(biāo),設(shè)出點B的坐標(biāo),求出線段FC的中點坐標(biāo),由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設(shè),由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩點式方程可求直線方程.【詳解】∵直線過點,,∴,∴,化簡得.故答案為:.14、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.15、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:16、①.21②.1540【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到=,由此可求的值,以及前20層的總球數(shù)【詳解】由題意可知,,故==,所==21,所以S20=a1+a2+a3+a4+??+a20=(12+22+32+??+202)+(1+2+3+??+20)=×+×=1540故答案為:21;1540三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)求出橢圓的焦點和頂點,即得雙曲線的頂點和焦點,從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點,得的取值范圍,設(shè),由韋達定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點,得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍18、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當(dāng)時,解得;當(dāng)時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當(dāng)為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當(dāng)為奇數(shù)時,,不存在最小的值,故當(dāng)為48時,滿足條件.19、(1);(2)【解析】(1)利用等差數(shù)列以及三角形內(nèi)角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及兩角和與差的三角函數(shù),結(jié)合三角函數(shù)的最值求解即可【詳解】(1)由角A、B、C的度數(shù)成等差數(shù)列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以當(dāng)時,即時,20、(1)證明見解析;(2).【解析】(1)設(shè)BD交AC于點O,連結(jié)EO,根據(jù)三角形中位線證明BP∥EO即可;(2)根據(jù)三棱錐P-ABD的體積求出AB長度,過A作AH⊥BP于H,可證AH即為要求的距離,根據(jù)直角三角形等面積法即可求AH長度.【小問1詳解】設(shè)BD交AC于點O,連結(jié)EO.∵ABCD為矩形,∴O為BD的中點.又E為PD的中點,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小問2詳解】,又V=,可得AB=2.在面PAB內(nèi)過點A作交于.由題設(shè)易知平面,∴故平面,由等面積法得:,∴點A到平面的距離為.21、(Ⅰ)最大值為,最小值為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論