陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安市育才中學2026屆高二數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》是我國古代的數(shù)學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.162.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.3.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.274.設(shè)為可導函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.5.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.6.數(shù)列滿足且,則的值是()A.1 B.4C.-3 D.67.直線y=x+1與圓x2+y2=1的位置關(guān)系為A.相切B.相交但直線不過圓心C.直線過圓心D.相離8.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條9.若將雙曲線繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.10.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.11.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.512.已知圓,圓相交于P,Q兩點,其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線上的動點,,,則的最小值為________.14.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______15.歷史上第一個研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進一步研究了這些圓錐曲線的光學性質(zhì),比如:從拋物線的焦點發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對稱軸:反之,平行于拋物線對稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點.已知拋物線,經(jīng)過點一束平行于C對稱軸的光線,經(jīng)C上點P反射后交C于點Q,則PQ的長度為______.16.等比數(shù)列的前項和為,則的值為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為(1)求橢圓的方程;(2)設(shè)直線與橢圓相交于不同的兩點,已知點的坐標為,若,求直線的方程18.(12分)在①,②,③,三個條件中任選一個,補充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項和為,數(shù)列是等差數(shù)列,其前項和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項公式;(2)求和.19.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;20.(12分)某地從今年8月份開始啟動12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計接種人數(shù)統(tǒng)計如下表:前x周1234累計接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預(yù)計該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為,21.(12分)已知等差數(shù)列的公差為2,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)如圖,拋物線的頂點在原點,圓的圓心恰是拋物線的焦點.(1)求拋物線的方程;(2)一條直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于、、、四點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.2、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.3、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因為為等比數(shù)列,設(shè)公比為,則,解得,又,所以.故選:B.4、D【解析】由題,為可導函數(shù),,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關(guān)鍵是對所給的極限式進行整理,得到符合導數(shù)定義的形式5、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.6、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A7、B【解析】求出圓心到直線的距離d,與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系,同時判斷圓心是否在直線上,即可得到正確答案解:由圓的方程得到圓心坐標(0,0),半徑r=1則圓心(0,0)到直線y=x+1的距離d==<r=1,把(0,0)代入直線方程左右兩邊不相等,得到直線不過圓心所以直線與圓的位置關(guān)系是相交但直線不過圓心故選B考點:直線與圓的位置關(guān)系8、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.9、C【解析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負即可求解.【詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對稱中心順時針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C10、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.11、D【解析】取雙曲線的左焦點,連接,計算可得,即.設(shè),則,,解得:,利用勾股定理計算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設(shè),則,,解得:.,,..故選:D12、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準線的距離為,進而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點,設(shè)到準線的距離為,則,而的最小值為到準線的距離,故的最小值為.故答案為:614、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)15、####【解析】根據(jù)題意,求得點以及拋物線焦點的坐標,即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點的坐標,即可求得.【詳解】因為經(jīng)過點一束平行于C對稱軸的光線交拋物線于點,故對,令,則可得,也即的坐標為,又拋物線的焦點的坐標為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標為,則.故答案為:.16、【解析】根據(jù)等比數(shù)列前項和公式的特點列方程,解方程求得的值.【詳解】由于等比數(shù)列前項和,本題中,故.故填:.【點睛】本小題主要考查等比數(shù)列前項和公式的特點,考查觀察與思考的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由離心率公式以及橢圓的性質(zhì)列出方程組得出橢圓的方程;(2)聯(lián)立直線和橢圓方程,利用韋達定理得出點坐標,最后由距離公式得出直線的方程【小問1詳解】由題意可得,得,,橢圓;【小問2詳解】設(shè),,直線為由,得顯然,由韋達定理有:,則;所以,且,若,解得,所以18、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項公式,再由等差數(shù)列列出方程求出首項與公差可得通項公式,選②③與①相同的方法求數(shù)列的通項公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,19、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值20、(1);(2)預(yù)計第9周才能完成接種工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小問1詳解】解:由表中數(shù)據(jù)得,,,,.所以所以y關(guān)于的線性回歸方程為.【小問2詳解】解:令,解得.所以預(yù)計第9周才能完成接種工作.21、(1)(2)【解析】(1)由,,成等比數(shù)列和,可得,解方程求出,從而可求出的通項公式,(2)由(1)可得,然后利用裂項相消法可求出【小問1詳解】因為等差數(shù)列的公差為2,所以又因為成等比數(shù)列,所以,解得,所以.【小問2詳解】由(1)得,所以.22、(1)圓的圓心坐標為,即拋物線的焦點為,……3分∴∴拋物線方程為……6分

由題意知直線AD的方程為…7分即代入得=0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論