湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省荊門市胡集高中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點2.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則3.某人忘了電腦屏保密碼的后兩位,但記得最后一位是1,3,5,7,9中的一個數(shù)字,倒數(shù)第二位是G,O,D中的一個字母,若他嘗試輸入密碼,則一次輸入就解開屏保的概率是()A. B.C. D.4.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得5.設(shè)AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則的值是()A. B.C. D.6.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.7.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.8.設(shè),,若,其中是自然對數(shù)底,則()A. B.C. D.9.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.10.已知等差數(shù)列中的、是函數(shù)的兩個不同的極值點,則的值為()A. B.1C.2 D.311.一組樣本數(shù)據(jù):,,,,,由最小二乘法求得線性回歸方程為,若,則實數(shù)m的值為()A.5 B.6C.7 D.812.空間直角坐標(biāo)系中,已知則點關(guān)于平面的對稱點的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________14.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.15.橢圓C:的左、右焦點分別為,,P為橢圓上異于左右頂點的任意一點,、的中點分別為M、N,O為坐標(biāo)原點,四邊形OMPN的周長為4,則的周長是_____16.若圓與圓相交,則的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x經(jīng)過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當(dāng)AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.18.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.19.(12分)在平面直角坐標(biāo)系中,已知直線:(t為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求曲線C的直角坐標(biāo)方程;(2)設(shè)點M的直角坐標(biāo)為,直線l與曲線C的交點為A,B,求的值20.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項和.21.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.22.(10分)已知點A(,0),點C為圓B:(B為圓心)上一動點,線段AC的垂直平分線與直線BC交于點G(1)設(shè)點G的軌跡為曲線T,求曲線T的方程;(2)若過點P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點,求△MNO面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D2、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C3、C【解析】應(yīng)用分步計數(shù)法求后兩位的可能組合數(shù),即可求一次輸入就解開屏保的概率.【詳解】由題設(shè),后兩位可能情況有,∴一次輸入就解開屏保的概率是.故選:C.4、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因為全稱命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.5、D【解析】根據(jù)橢圓的定義,寫出,可求出的和,又根據(jù)關(guān)于縱軸成對稱分布,得到結(jié)果詳解】設(shè)橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關(guān)于軸成對稱分布,又,故所求的值為故選:D6、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C7、A【解析】由題意首先畫出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點睛】方法點睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最??;當(dāng)時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.8、A【解析】利用函數(shù)的單調(diào)性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.9、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A10、C【解析】對求導(dǎo),由題設(shè)及根與系數(shù)關(guān)系可得,再根據(jù)等差中項的性質(zhì)求,最后應(yīng)用對數(shù)運算求值即可.【詳解】由題設(shè),,由、是的兩個不同的極值點,所以,又是等差數(shù)列,所以,即,故.故選:C11、B【解析】求出樣本的中心點,再利用回歸直線必過樣本的中心點計算作答.【詳解】依題意,,則這個樣本的中心點為,因此,,解得,所以實數(shù)m的值為6.故選:B12、D【解析】根據(jù)空間直角坐標(biāo)系的對稱性可得答案.【詳解】根據(jù)空間直角坐標(biāo)系的對稱性可得關(guān)于平面的對稱點的坐標(biāo)為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知可得,結(jié)合雙曲線中的關(guān)系,即可求解.【詳解】由雙曲線方程可得其焦點在軸上,因為其一條漸近線為,所以,.故答案為:【點睛】本題考查的是有關(guān)雙曲線性質(zhì),利用漸近線方程與離心率關(guān)系是解題的關(guān)鍵,要注意判斷焦點所在位置,屬于基礎(chǔ)題.14、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設(shè)條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.15、【解析】先證明則四邊形OMPN是平行四邊形,進(jìn)而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因為M,O,N分別為的中點,所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長為4可知,,即,則,于是的周長是.故答案為:.16、【解析】根據(jù)圓心距小于兩半徑之和,大于兩半徑之差的絕對值列出不等式解出即可.【詳解】圓的圓心為原點,半徑為,圓,即的圓心為,半徑為,由于兩圓相交,故,即,解得,即的取值范圍是,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)3或【解析】(1)由可得,則可得直線為,設(shè),然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡結(jié)合前面的式子可求出或,從而可可求出的值,進(jìn)而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設(shè),由,得,由,得則,因為,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問2詳解】設(shè),由,得,由,得,則,所以,,因為AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或18、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當(dāng)時,在上恒成立,所以此時在上為增函數(shù),當(dāng)時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時,在上為增函數(shù),當(dāng)時,在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當(dāng)時,在上為增函數(shù),無最小值.當(dāng)時,在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.19、(1)(2)【解析】【小問1詳解】由,得.兩邊同乘,即.由,得曲線的直角坐標(biāo)方程為【小問2詳解】將代入,得,設(shè)A,B對應(yīng)的參數(shù)分別為則所以.由參數(shù)的幾何意義得20、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項、公比即可得解;(2)化簡后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯位相減法求出數(shù)列的和.【小問1詳解】設(shè)公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項,為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.21、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.22、(1)(2)1【解析】(1)可由題意,點G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點G的軌跡為橢圓,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論