下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年線性代數(shù)真題命題特點(diǎn)
導(dǎo)語(yǔ):考研數(shù)學(xué)中,線性代數(shù)的難度一般在高數(shù)和概率統(tǒng)計(jì)之間,且大多數(shù)的考生認(rèn)為線性
代數(shù)試題難度不大,但是計(jì)算量稍微偏大,容易算錯(cuò),線代代數(shù)的考查是對(duì)基本方法的考查,但
是往往在做題過程中需要利用一些性質(zhì)進(jìn)行輔助解決。以下是我為大家精心整理的線性代數(shù)真題
命題特點(diǎn),歡迎大家參考!
線性代數(shù)的學(xué)科特點(diǎn)是知識(shí)點(diǎn)之間的綜合性比較強(qiáng)這也是它本身的一個(gè)難點(diǎn)。這就需要我
們?cè)趶?fù)習(xí)過程中,注意對(duì)于知識(shí)點(diǎn)間的關(guān)聯(lián)性進(jìn)行對(duì)比著學(xué)習(xí),有助于鞏固知識(shí)點(diǎn)且不易混淆。
總體來說,線性代數(shù)主要包括六部分的內(nèi)容,行列式、矩陣、向量、線性方程組、特征值與
特征向量、二次型。
行列式部分
熟練掌握行列式的計(jì)算。
行列式實(shí)質(zhì)上是一個(gè)數(shù)或含有字母的式子,如何把這個(gè)數(shù)算出來,一般情況下很少用行列式
的定義進(jìn)行求解,而往往采用行列式的性質(zhì)將其化成上或下三角行列式進(jìn)行計(jì)算,或是采用降階
法(按行或按列展開定理),甚至有時(shí)兩種方法同時(shí)用。
此外范德蒙行列式也是需要掌握的。行列式的考查方式分為低階的數(shù)字型矩陣和高階抽象行
列式的計(jì)算、含參數(shù)的行列式的計(jì)算等等。小伙伴們只要掌握了基本方法即可。
矩陣部分
重視矩陣運(yùn)算,掌握矩陣秩的應(yīng)用。
通過考研數(shù)學(xué)歷年真題分類統(tǒng)計(jì)與考點(diǎn)分布,矩陣部分的考點(diǎn)集中在逆矩陣、伴隨矩陣、矩
陣的秋及矩陣方程的考查。此外,含隨矩陣的'矩陣方程,矩陣與行列式的關(guān)系、逆矩陣的求法
也是我們需要掌握的知識(shí)點(diǎn)。
涉及秩的應(yīng)用,包含秩與矩陣可逆的關(guān)系,矩陣及其伴隨矩陣秩之間的關(guān)系,矩陣的秩與向
量組的秩之間的關(guān)系,矩陣等價(jià)與向量組等價(jià)的區(qū)別與聯(lián)系,系數(shù)矩陣的秩與方程組的解之間關(guān)
系的分析。
向量部分
理解相關(guān)無關(guān)概念,靈活進(jìn)行判定。
向量組的線性相關(guān)問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點(diǎn)。要求考
生掌握線性相關(guān)、線性表出、線性無關(guān)的定義。以及如何判斷向量組線性相關(guān)及線性無關(guān)的方法。
向量組的秩和極大無關(guān)組以及向量組等價(jià)這些重要的知識(shí)點(diǎn)要求同學(xué)們一定一定掌握到位.
這是線性代數(shù)前三個(gè)內(nèi)容的命題特點(diǎn),而行列式的矩陣是整個(gè)線性代數(shù)的基礎(chǔ),對(duì)于行列式
的計(jì)算及矩陣的運(yùn)算與一些重要的性質(zhì)與結(jié)論請(qǐng)小伙伴們一定要?jiǎng)?wù)必掌握,否則的話,對(duì)于后面
四部分的學(xué)習(xí)會(huì)越學(xué)越難,希望同學(xué)們?cè)趶?fù)習(xí)過程中一定注意前面內(nèi)容的復(fù)習(xí),為后面的考研數(shù)
學(xué)復(fù)習(xí)打好基礎(chǔ)。
前面我們已經(jīng)分析過考研數(shù)學(xué)線性代數(shù)這門學(xué)科整體的特點(diǎn)是知識(shí)點(diǎn)之間的綜合性比較強(qiáng),
有些概念較為抽象,這也是大部分人認(rèn)為考研數(shù)學(xué)線性代數(shù)不好學(xué),根本找不到復(fù)習(xí)的頭緒,做
題時(shí)也是一頭霧水,不知道怎么分析考慮。
所以大家在學(xué)習(xí)過程中一定要注意知識(shí)間之間的關(guān)聯(lián)性,理解概率的實(shí)質(zhì)。如:矩陣的秩與
向量組的秩之間的關(guān)聯(lián),矩陣事介與向量組等價(jià)的區(qū)別,矩陣等價(jià)、相似、合同三者之間的區(qū)別
與聯(lián)系、矩陣相似對(duì)角化與實(shí)對(duì)稱矩陣正交變換對(duì)角化二者之間的區(qū)別與聯(lián)系等等。若是大家對(duì)
于上面的問題根本分不清楚,則說明大家對(duì)于基本概念、基本方法還沒有完全理解透徹。
不過,大家也不要太焦急,希望小伙伴在后期的復(fù)習(xí)過程中對(duì)于基本概念、基本方法要多加
理解和體會(huì),學(xué)習(xí)一定要有心得。
線性方程組
會(huì)求兩類方程組的解。
線性方程組是線性代數(shù)這么學(xué)科的核心和樞紐,很多問題的解決都離不開解方程組。因而線
性方程組解的問題是每年必考的知識(shí)點(diǎn)。對(duì)于齊次線性方程組,我們需要掌握基礎(chǔ)解系的概念,
以及如何求一個(gè)方程組的基礎(chǔ)解系。清楚明了基礎(chǔ)解系所含線性無關(guān)解向量的個(gè)數(shù)和系數(shù)矩陣的
秩之間的關(guān)系。會(huì)判斷非產(chǎn)次線性方程組的解的情況,掌握其求解的方法。
此外,我們還需要掌握非齊次線性方程組與其對(duì)應(yīng)的齊次線性方程組的解結(jié)構(gòu)之間的關(guān)系。
特征值與特征向量
掌握矩陣對(duì)角化的方法。
這T階是理論性較強(qiáng)的,理解特征值與特征向量的定義及性質(zhì),矩陣相似的定義,矩陣對(duì)
角化的定義。小伙伴們還需掌握求矩陣特征值與特征向量的基本方法。會(huì)判斷一個(gè)矩陣是否可以
對(duì)角化,若可以的話,需要把相應(yīng)的可逆矩陣P求出來。還需要注意矩陣及其關(guān)聯(lián)矩陣(轉(zhuǎn)置、
逆、伴隨、相似)的特征值與特征向量的關(guān)系。
反問題也是喜歡考查的一類題型,已知矩陣的特征值與特征向量,反求矩陣A。
二次型
理解二次型標(biāo)準(zhǔn)化的過程,掌握實(shí)對(duì)稱矩陣的對(duì)角化。二次型幾乎是每年必考的一道大題,
一般考查的是采用正交變換法將二次型標(biāo)準(zhǔn)化。掌握二次型的標(biāo)準(zhǔn)形與規(guī)范型之間的區(qū)別與聯(lián)系。
會(huì)判斷二次型是否正定的一般方法.討論矩陣等價(jià)、相似、合同的關(guān)系.
雖然線性代數(shù)在考研數(shù)學(xué)考試試卷中僅有5題,占有34分的分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 天臺(tái)山國(guó)清寺:宗教文化旅游市場(chǎng)的多維剖析與發(fā)展進(jìn)路
- 天使投資對(duì)在美上市中國(guó)公司治理的影響:基于多維度視角的實(shí)證剖析
- 大鼠前爪內(nèi)肌神經(jīng)解剖學(xué)特征及失神經(jīng)后形態(tài)學(xué)演變的深度剖析
- 2025年中共憑祥市委市人民政府接待處編外工作人員招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 形式政策課件
- 形勢(shì)與政策課件
- 2025年中國(guó)科學(xué)院山西煤炭化學(xué)研究所招聘?jìng)淇碱}庫(kù)有答案詳解
- 廣州市海珠區(qū)人民政府辦公室2026年公開招聘雇員備考題庫(kù)及1套參考答案詳解
- 綜合執(zhí)法合同范本
- 2025年浙江招聘恒信農(nóng)商銀行專職清非人員的備考題庫(kù)及完整答案詳解一套
- 2024年法律職業(yè)資格《客觀題卷一》試題及答案
- 2025課堂懲罰 主題班會(huì):馬達(dá)加斯加企鵝課堂懲罰 課件
- 本科《行政領(lǐng)導(dǎo)學(xué)》期末紙質(zhì)考試總題庫(kù)2025版
- 保安員基本條件及行為規(guī)范
- 家裝設(shè)計(jì)的職責(zé)【部門職能】1、接待裝-112702874
- 艾堅(jiān)蒙(安慶)科技發(fā)展有限公司年產(chǎn)4000噸光固化引發(fā)劑系列產(chǎn)品項(xiàng)目環(huán)境影響報(bào)告書
- 焊接工序首件檢驗(yàn)記錄表
- GB/T 23794-2023企業(yè)信用評(píng)價(jià)指標(biāo)
- GB/T 4457.2-2003技術(shù)制圖圖樣畫法指引線和基準(zhǔn)線的基本規(guī)定
- GB/T 39433-2020氣彈簧設(shè)計(jì)計(jì)算
- GB/T 28756-2012纜索起重機(jī)
評(píng)論
0/150
提交評(píng)論