版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省淄博第十中學2026屆高二上數(shù)學期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.2.設拋物線的焦點為,點為拋物線上一點,點坐標為,則的最小值為()A. B.C. D.3.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.4.已知曲線,則“”是“C為雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.6.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.7.已知數(shù)列中,,則()A.2 B.C. D.8.在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為中點,點為平面內(nèi)一點,線段與互相平分,則滿足的實數(shù)的值有A.0個 B.1個C.2個 D.3個9.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.10.下列求導運算正確的是()A. B.C. D.11.已知l,m是兩條不同的直線,是兩個不同的平面,且,則()A.若,則 B.若,則C.若,則 D.若,則12.已知平面,的法向量分別為,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,左右焦點分別為,若過右焦點的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點,且軸,則雙曲線的離心率是_________.14.設,若直線與直線平行,則的值是________15.已知拋物線C:的焦點F到準線的距離為4,過點F和的直線l與拋物線C交于P,Q兩點.若,則________.16.如圖,拋物線上的點與軸上的點構(gòu)成等邊三角形,,,其中點在拋物線上,點的坐標為,,猜測數(shù)列的通項公式為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線與橢圓有公共焦點,且它的一條漸近線方程為.(1)求橢圓的焦點坐標;(2)求雙曲線的標準方程18.(12分)在平面直角坐標系中,已知直線:(t為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為(1)求曲線C的直角坐標方程;(2)設點M的直角坐標為,直線l與曲線C的交點為A,B,求的值19.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時的燃料費與其在靜水中速度的平方成正比,比例系數(shù)為k,當v=12km/h,每小時的燃料費為720元(1)求比例系數(shù)k(2)當時,為了使全程燃料費最省,船的實際前進速度應為多少?(3)當(x為大于8的常數(shù))時,為了使全程燃料費最省,船的實際前進速度應為多少?20.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)當時,求函數(shù)f(x)的值域.21.(12分)已知直線,,,其中與的交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程22.(10分)如圖,矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線在x軸上方的曲線上,求矩形面積最大時的邊長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.2、B【解析】設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B3、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B4、A【解析】根據(jù)充分必要條件的定義,以及雙曲線的標準方程進行判斷可得選項【詳解】解:當時,表示雙曲線,當表示雙曲線時,則,所以“”是“C為雙曲線”的充分不必要條件.故選A5、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當時,不等式化簡為恒成立,所以,當時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D6、D【解析】由題意可得兩點的坐標滿足圓,然后由圓的性質(zhì)可得當時,弦長最小,當過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當弦長最小時,,因為,半徑為2,所以弦長的最小值為,當過點時,弦長最長為4,因為,所以當弦長最小時,的最大值為,當弦長最大時,的最小值為,所以的取值范圍為,故選:D7、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.8、C【解析】因為線段D1Q與OP互相平分,所以四點O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時,Q一定在線段ON上運動,只有當P為C1D1的中點時,Q與點M重合,此時λ=1,符合題意若P在線段C1B1與線段B1A1上時,在平面ABCD找不到符合條件Q;在P在線段D1A1上時,點Q在直線OM上運動,只有當P為線段D1A1的中點時,點Q與點M重合,此時λ=0符合題意,所以符合條件的λ值有兩個故選C.9、D【解析】設圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設圓錐的半徑為,母線長,因為側(cè)面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.10、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.11、B【解析】由空間中直線與直線、直線與平面、平面與平面的位置關系分析選項A,C,D,由平面與平面垂直的判定定理判定選項D.【詳解】選項A.由,,直線l,m可能相交、平行,異面,故不正確.選項B.由,,則,故正確.選項C.由,,直線l,m可能相交、平行,異面,故不正確.選項D.由,,則可能相交,可能平行,故不正確.故選:B12、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可得,進而可得,再根據(jù),可得再根據(jù)雙曲線的定義,即可得到,進而求出結(jié)果.【詳解】如圖所示:設切點為,所以,又軸所以,所以,由,,所以又,所以故答案為:.14、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當時,兩直線分別為和,此時,兩直線不平行;當時,要使得兩直線平行,即,解得,.故答案為:15、9【解析】根據(jù)拋物線C:的焦點F到準線的距離為4,求得拋物線方程.再由和,得到點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標,再由兩點間距離公式求解.【詳解】由拋物線C:的焦點F到準線的距離為4,所以,所以拋物線方程為.因為,,所以點P的縱坐標為1,代入拋物線方程,可得點P的橫坐標為,不妨設,則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點睛】本題主要考查拋物線的方程與性質(zhì),還考查了運算求解的能力,屬于中檔題.16、【解析】求出,,,,,,可猜測,利用累加法,即可求解【詳解】的方程為,代入拋物線可得,同理可得,,,,可猜測,證明:記三角形的邊長為,由題意可知,當時,在拋物線上,可得,當時,,兩式相減得:化簡得:,則數(shù)列是等差數(shù)列,,,,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓方程及其參數(shù)關系求出參數(shù)c,即可得焦點坐標.(2)由漸近線及焦點坐標,可設雙曲線方程為,再由雙曲線參數(shù)關系求出參數(shù),即可得雙曲線標準方程.【小問1詳解】由題設,,又,所以橢圓的焦點坐標為.【小問2詳解】由題設,令雙曲線為,由(1)知:,可得,所以雙曲線的標準方程為.18、(1)(2)【解析】【小問1詳解】由,得.兩邊同乘,即.由,得曲線的直角坐標方程為【小問2詳解】將代入,得,設A,B對應的參數(shù)分別為則所以.由參數(shù)的幾何意義得19、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關系式,根據(jù)當v=12km/h,每小時的燃料費為720元即可求解;(2)列出燃料費的函數(shù)解析式,利用導數(shù)求其最值即可;(3)討論x的范圍,結(jié)合(2)的結(jié)論可得答案.【小問1詳解】設每小時的燃料費為,則當v=12km/h,每小時的燃料費為720元,代入得.【小問2詳解】由(1)得.設全程燃料費為y,則(),所以,令,解得v=0(舍去)或v=16,所以當時,;當時,,所以當v=16時,y取得最小值,故為了使全程燃料費最省,船的實際前進速度應為8km/h【小問3詳解】由(2)得,若時,則y在區(qū)間上單調(diào)遞減,當v=x時,y取得最小值;若時,則y區(qū)間(8,16)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當v=16時,y取得最小值;綜上,當時,船的實際前進速度為8km/h,全程燃料費最?。划敃r,船的實際前進速度應為(x-8)km/h,全程燃料費最省20、(1);(2).【解析】(1)先通過降冪公式和輔助角公式將函數(shù)化簡,進而求出周期;(2)求出的范圍,進而結(jié)合三角函數(shù)的性質(zhì)求得答案.【小問1詳解】,函數(shù)最小正周期為.【小問2詳解】當時,,,∴,即函數(shù)的值域為.21、(1);(2).【解析】(1)首先求、的交點坐標,根據(jù)的斜率,應用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關系求圓的半徑,結(jié)合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年茂名市電白區(qū)電城中學招聘合同制教師備考題庫及答案詳解一套
- 2025年市場化選聘中國瑞林工程技術股份有限公司財務總監(jiān)、法務總監(jiān)備考題庫及一套完整答案詳解
- 高中生運用歷史GIS技術考察新航路開辟商業(yè)網(wǎng)絡條件課題報告教學研究課題報告
- 2025年上海第九人民醫(yī)院成果轉(zhuǎn)化辦公室招聘辦公室工作人員備考題庫完整答案詳解
- 2025年實驗室與設備管理處校內(nèi)招聘備考題庫及完整答案詳解一套
- 2025年國家管網(wǎng)集團西北公司招聘備考題庫及一套答案詳解
- 2025年雄安人才服務有限公司運營統(tǒng)籌、品質(zhì)管理崗等崗位招聘備考題庫完整參考答案詳解
- 2025年北京老年醫(yī)院面向應屆畢業(yè)生公開招聘43人備考題庫及參考答案詳解
- 2025年恒豐銀行廣州分行社會招聘備考題庫及一套答案詳解
- 2025年合肥市檔案館公開招聘政府購買服務崗位人員備考題庫及答案詳解1套
- 2026元旦主題班會:馬年猜猜樂猜成語 (共130題)【課件】
- 2026年太原城市職業(yè)技術學院單招綜合素質(zhì)考試題庫匯編
- 2026年盤錦職業(yè)技術學院單招職業(yè)技能測試題庫及參考答案詳解一套
- 倒運物料合同范本
- 2026年關于護士長工作計劃4篇
- 2025至2030全球及中國手機用鋰離子電池行業(yè)調(diào)研及市場前景預測評估報告
- 甘肅省定西市2023-2024學年八年級上學期數(shù)學期末考試試卷(含答案)
- 少年有志歌詞
- 2025年一級建造師《水利水電》真題及答案解析
- 急診科臨床技術操作規(guī)范和臨床診療指南
- 2025人民法院聘用書記員考試試題(+答案解析)
評論
0/150
提交評論