【北師大版】七年級下冊數(shù)學(xué)《3 探索三角形全等的條件 (25)》課件_第1頁
【北師大版】七年級下冊數(shù)學(xué)《3 探索三角形全等的條件 (25)》課件_第2頁
【北師大版】七年級下冊數(shù)學(xué)《3 探索三角形全等的條件 (25)》課件_第3頁
【北師大版】七年級下冊數(shù)學(xué)《3 探索三角形全等的條件 (25)》課件_第4頁
【北師大版】七年級下冊數(shù)學(xué)《3 探索三角形全等的條件 (25)》課件_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第四章三角形4.3探索三角形全等的條件第1課時利用“邊邊邊”判定三角形全等林妙雪學(xué)習(xí)目標(biāo)1.了解三角形的穩(wěn)定性,掌握三角形全等的“SSS”判定方法,并能應(yīng)用它判定兩個三角形是否全等.(重點(diǎn))2.由探索三角形全等條件的過程,體會由操作、歸納獲得數(shù)學(xué)結(jié)論的過程.(難點(diǎn))知識回顧1.什么叫全等三角形?2.全等三角形有什么性質(zhì)?3.已知△ABC

≌△DEF,找出其中相等的邊與角.能夠重合的兩個三角形叫全等三角形.全等三角形的對應(yīng)邊相等,對應(yīng)角相等.三條邊分別相等,三個角分別相等的兩個三角形全等.如果只滿足這些條件中的一部分,那么能保證△ABC≌△DEF嗎?想一想:利用定義判定講授新課一、三角形全等的判定探究活動1:一個條件可以嗎?(1)有一條邊相等的兩個三角形不一定全等講授新課一、三角形全等的判定探究活動1:一個條件可以嗎?(1)有一個角相等的兩個三角形不一定全等結(jié)論:有一個條件相等不能保證兩個三角形全等.結(jié)論:有兩個條件相等不能保證兩個三角形全等.結(jié)論:有三個角相等不能保證兩個三角形全等.(1)有一邊一角相等的兩個三角形探究活動2:兩個條件可以嗎?(2)有兩邊相等的兩個三角形(3)有兩角相等的兩個三角形議一議:如果給出三個條件畫三角形,你能說出哪幾種情況?三條邊三個角兩邊一角兩角一邊結(jié)論:三個角分別相等的兩個三角形不一定全等.結(jié)論:三邊對應(yīng)相等的三角形全等.探究活動3:三個條件可以嗎?已知△ABC,求作一個△A′B′C′

,使A′B′=AB,B′C′=BC,A′C′

=AC.把畫好的△A′B′C′剪下,放到△ABC上,他們?nèi)葐??作法:?)作線段B′C′=BC;(2)分別以B',C'為圓心,線段AB,AC長為半徑作弧,兩弧相交于點(diǎn)A';(3)連接A'B',A'C'.則△A′B′C′即為所求。ABC知識要點(diǎn)“邊邊邊”公理:三邊分別相等的兩個三角形全等.(簡寫為“邊邊邊”或“SSS”)ABCDEF幾何語言:在△ABC和△DEF中,

AB=DE,(已知)

BC=EF,(已知)

CA=FD,(已知)∴△ABC

≌△DEF(SSS).典例精析例1

如圖,有一個三角形鋼架,AB=AC

,AD是連接點(diǎn)A與BC中點(diǎn)

D

的支架.試說明:(1)△ABD≌△ACD

.(2)∠BAD=∠CAD解:(1)∵

D

是BC中點(diǎn),

∴BD=CD.在△ABD

與△ACD

中,

AB=AC(已知)BD=CD

(已證)AD=AD

(公共邊)

∴△ABD≌

△ACD

(SSS)(2)∵

△ABD≌△ACD(已證)∴∠BAD=∠CAD(全等三角形對應(yīng)角相等)針對訓(xùn)練如圖,C是BF的中點(diǎn),AB=DC,AC=DF.試說明:△ABC

≌△DCF.解:∵C是BF中點(diǎn),∴BC=CF.在△ABC

和△DCF中,AB=DC,(已知)AC=DF,(已知)BC=CF,(已證)F∴△ABC≌△DCF(SSS).變式訓(xùn)練已知:如圖,點(diǎn)B、E、C、F在同一直線上,AB=DE,AC=DF,BE=CF.試說明:(1)△ABC≌△DEF;

(2)∠A=∠D.解:(1)∵BE=CF,∴BE+CE=CF+CE.在△ABC和△DEF中,AB=DE,(已知)AC=DF,(已知)BC=EF,(已證)∴△ABC≌△DEF(SSS).ABCFDE即BC=EF(2)∵△ABC≌△DEF(SSS)

∴∠A=∠D(全等三角形對應(yīng)角相等)二、三角形的穩(wěn)定性1.將三根木條用釘子釘成一個三角形木架.2.將四根木條用釘子釘成一個四邊形木架.請同學(xué)們看看:三角形和四邊形的模型,扭一扭模型,它們的形狀會改變嗎?不會會發(fā)現(xiàn)1.三角形具有穩(wěn)定性.2.四邊形沒有穩(wěn)定性.只有三角形具有穩(wěn)定性.其它多邊形都沒有穩(wěn)定性.理解三角形的“穩(wěn)定性”“只要三角形三條邊的長度固定,這個三角形的形狀和大小也就完全確定,三角形的這種性質(zhì)叫做“三角形的穩(wěn)定性”.這就是說,三角形的穩(wěn)定性不是“拉得動、拉不動”的問題,其實(shí)質(zhì)應(yīng)是“三角形邊長確定,其形狀和大小就確定了”.三角形穩(wěn)定性在生活中的應(yīng)用三角形穩(wěn)定性在生活中的應(yīng)用三角形穩(wěn)定性在生活中的應(yīng)用當(dāng)堂練習(xí)1.填空題:(1)如圖,AB=CD,AC=DB,△ABC和△DCB是否全等?AC解:在△ABC與△DCB中.AB=DCAC=DB

=

∴△ABC≌

(SSS)(2)如圖,D、F是線段BC上的兩點(diǎn),AB=CE,AF=DE,要使△ABF≌△ECD

,還需要條件_________________.AEBDFC課堂小結(jié)全等三角形的判定“SSS”公理:三邊分別相等的兩個三角形全等.三角形的穩(wěn)定性:三角形三邊長度確定了,這個三角形的形狀和大小就完全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論