江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省鷹潭一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,,則()A.6 B.7C.8 D.92.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.43.直線被橢圓截得的弦長是A. B.C. D.4.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.5.如圖,平行六面體中,為的中點,,,,則()A. B.C. D.6.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.7.命題,,則是()A., B.,C., D.,8.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.9.設(shè)拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是()A.6 B.8C.9 D.1010.已知不等式解集為,下列結(jié)論正確的是()A. B.C D.11.設(shè)等差數(shù)列的前項和為,已知,,則的公差為()A.2 B.3C.4 D.512.若函數(shù)在上有兩個極值點,則下列選項中不正確的為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀(jì)提出的一種在實數(shù)集上近似求解方程根的一種方法.具體步驟如下:設(shè)r是函數(shù)y=f(x)的一個零點,任意選取x0作為r的初始近似值,作曲線y=f(x)在點(x0,f(x0))處的切線l1,設(shè)l1與x軸交點的橫坐標(biāo)為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(x1,f(x1))處的切線l2,設(shè)l2與x軸交點的橫坐標(biāo)為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點的橫坐標(biāo)為xn+1,并稱xn+1為r的n+1次近似值.設(shè)f(x)=x3+x-1的零點為r,取x0=0,則r的2次近似值為________14.甲乙兩艘輪船都要在某個泊位???個小時,假定它們在一晝夜的時間段內(nèi)隨機地到達,則兩船中有一艘在??坎次粫r、另一艘船必須等待的概率為______.15.若方程表示焦點在y軸上的雙曲線,則實數(shù)k的取值范圍是______16.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值18.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點的個數(shù).19.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標(biāo);(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點20.(12分)已知二次函數(shù),令,解得.(1)求二次函數(shù)的解析式;(2)當(dāng)關(guān)于的不等式恒成立時,求實數(shù)的范圍.21.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.22.(10分)在平面直角坐標(biāo)系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C2、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.3、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題4、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.5、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點,故選:【點睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運用向量的加法、減法及實數(shù)與向量的積的運算,屬于基礎(chǔ)題6、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C7、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D8、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).9、A【解析】計算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點到該拋物線焦點的距離是.故選:A.10、C【解析】根據(jù)不等式解集為,得方程解為或,且,利用韋達定理即可將用表示,即可判斷各選項的正誤.【詳解】解:因為不等式解集為,所以方程的解為或,且,所以,所以,所以,故ABD錯誤;,故C正確.故選:C.11、B【解析】由以及等差數(shù)列的性質(zhì),可得的值,再結(jié)合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.12、C【解析】求導(dǎo),根據(jù)題意可得,從而可得出答案.【詳解】解:,因為函數(shù)在上有兩個極值點,所以,即.所以ABD正確,C錯誤.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用導(dǎo)數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點作曲線的切線的斜率為1,所以直線的方程為,其與軸交點的橫坐標(biāo)為1,即,因為,所以過點作曲線的切線的斜率為4,所以直線的方程為,其與軸交點的橫坐標(biāo)為,即,故答案為:14、【解析】利用幾何概型的面積型概率計算,作出邊長為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設(shè)甲乙兩艘輪船到達的時間分為,則,記事件為兩船中有一艘在停靠泊位時、另一艘船必須等待,則,即∴.故答案為:.【點睛】本題考查幾何概型,考查轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意對概率模型的抽象成面積型.15、【解析】由題可得,即求.【詳解】因為方程表示焦點在軸上的雙曲線,則,解得.故答案為:.16、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標(biāo)原點,所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因為,所以此方程沒有正整數(shù)解綜上,18、(1)當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點;或時函數(shù)有且只有一個零點;時,函數(shù)有兩個零點.【解析】(1)先對函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當(dāng)時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點,由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當(dāng)時,.所以時,關(guān)于的方程無解,或時關(guān)于的方程只有一個解,時,關(guān)于的方程有兩個不同解.因此,時函數(shù)沒有零點,或時函數(shù)有且只有一個零點,時,函數(shù)有兩個零點.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點,解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點情況,考查數(shù)形結(jié)合的思想,屬于中檔題19、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標(biāo);(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標(biāo)為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當(dāng)時,,所以直線過定點20、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的兩個根,根據(jù)根與系數(shù)之間的關(guān)系,即可求,;(2)根據(jù)題意,得出不等式恒成立,則,解不等式即可求出實數(shù)的范圍.詳解】解:(1)由題可知,,解得:,則-3,2是方程的兩個根,且,所以由根與系數(shù)之間的關(guān)系得,解得,所以二次函數(shù)的解析式為:;(2)由于不等式恒成立,即恒成立,則,解得:,所以實數(shù)的范圍為.【點睛】本題考查由一元二次不等式的解集求函數(shù)解析式,以及不等式恒成立問題求參數(shù)范圍,考查根與系數(shù)的關(guān)系和一元二次函數(shù)的圖象和性質(zhì),考查化簡運算能力21、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.22、(1);(2)或.【解析】(1)本題首先可以設(shè)動點,然后根據(jù)題意得出,通過化簡即可得出結(jié)果;(2)本題首先可排除直線斜率不存在時情況,然后設(shè)直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結(jié)果.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論