版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆北京市延慶區(qū)高一數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,則A. B.C. D.2.弧長為3,圓心角為的扇形面積為A. B.C.2 D.3.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù),則函數(shù)的值域是A. B.C. D.4.若偶函數(shù)在區(qū)間上是減函數(shù),是銳角三角形的兩個內(nèi)角,且,則下列不等式中正確的是()A. B.C. D.5.若函數(shù)(,且)在上的最大值為4,且函數(shù)在上是減函數(shù),則實數(shù)的取值范圍為()A. B.C. D.6.已知函數(shù)在上是增函數(shù),則的取值范圍是()A., B.,C., D.,7.給定已知函數(shù).若動直線y=m與函數(shù)的圖象有3個交點(diǎn),則實數(shù)m的取值范圍為A. B.C. D.8.將函數(shù)圖象向左平移個單位后與的圖象重合,則()A. B.C D.9.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.310.設(shè)常數(shù)使方程在區(qū)間上恰有三個解且,則實數(shù)的值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則__________.12.函數(shù)的單調(diào)增區(qū)間是______13.已知函數(shù)的圖象過原點(diǎn),且無限接近直線,但又不與該直線相交,則______14.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由15.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點(diǎn)F,G,則的值為______16.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當(dāng)時,恒成立.求實數(shù)的取值范圍.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.給出以下三個條件:①點(diǎn)和為函數(shù)圖象的兩個相鄰的對稱中心,且;②;③直線是函數(shù)圖象的一條對稱軸從這三個條件中任選兩個條件將下面題目補(bǔ)充完整,并根據(jù)要求解題已知函數(shù).滿足條件________與________(1)求函數(shù)的解析式;(2)把函數(shù)的圖象向右平移個單位長度,再將所得到的函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉肀叮v坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,函數(shù)的值域為,求實數(shù)的取值范圍18.已知函數(shù),.(1)求的最小正周期和最大值;(2)設(shè),求函數(shù)的單調(diào)區(qū)間.19.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上(1)求點(diǎn)C的坐標(biāo);(2)求△ABC的面積20.已知函數(shù)是奇函數(shù),且;(1)判斷函數(shù)在區(qū)間的單調(diào)性,并給予證明;(2)已知函數(shù)(且),已知在的最大值為2,求的值21.計算:(1)94(2)lg5+lg2?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】∵∴∴∴故選A2、B【解析】弧長為3,圓心角為,故答案為B3、D【解析】化簡函數(shù),根據(jù)表示不超過的最大整數(shù),可得結(jié)果.【詳解】函數(shù),當(dāng)時,;當(dāng)時,;當(dāng)時,,函數(shù)的值域是,故選D.【點(diǎn)睛】本題考查指數(shù)的運(yùn)算、函數(shù)的值域以及新定義問題,屬于難題.新定義題型的特點(diǎn)是:通過給出一個新概念,或約定一種新運(yùn)算,或給出幾個新模型來創(chuàng)設(shè)全新的問題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識和方法,實現(xiàn)信息的遷移,達(dá)到靈活解題的目的.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點(diǎn),弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運(yùn)算,使問題得以解決.4、C【解析】根據(jù),可得,根據(jù)的單調(diào)性,即可求得結(jié)果.【詳解】因為是銳角三角形的兩個內(nèi)角,故可得,即,又因為,故可得;是偶函數(shù),且在單調(diào)遞減,故可得在單調(diào)遞增,故.故選:C.【點(diǎn)睛】本題考查由函數(shù)奇偶性判斷函數(shù)的單調(diào)性,涉及余弦函數(shù)的單調(diào)性,屬綜合中檔題.5、A【解析】由函數(shù)(,且)在上的最大值為4,分情況討論得到,從而可得函數(shù)單調(diào)遞增,而在上是減函數(shù),所以可得,由此可求得的取值范圍【詳解】當(dāng)時,函數(shù)單調(diào)遞增,據(jù)此可知:,滿足題意;當(dāng)時,函數(shù)單調(diào)遞減,據(jù)此可知:,不合題意;故,函數(shù)單調(diào)遞增,若函數(shù)在上是減函數(shù),則,據(jù)此可得故選:A【點(diǎn)睛】此題考查對數(shù)函數(shù)的性質(zhì),考查指數(shù)函數(shù)的性質(zhì),考查分類討論思想,屬于基礎(chǔ)題.6、D【解析】先根據(jù)題意建立不等式組,再求解出,最后給出選項即可.【詳解】解:因為函數(shù)在上是增函數(shù),所以,解得,則故選:D.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù)范圍,是基礎(chǔ)題7、B【解析】畫出函數(shù)的圖像以及直線y=k的圖像,根據(jù)條件和圖像求得k的范圍?!驹斀狻吭O(shè),由題可知,當(dāng),即或時,;當(dāng),即時,,因為,故當(dāng)時,,當(dāng)時,,做出函數(shù)的圖像如圖所示,直線y=m與函數(shù)有3個交點(diǎn),可得k的范圍為(4,5).故選:B【點(diǎn)睛】本題考查函數(shù)圖像與直線有交點(diǎn)問題,先分別求出各段函數(shù)的解析式,再利用數(shù)形結(jié)合的方法得到參數(shù)的取值范圍。8、C【解析】利用三角函數(shù)的圖象變換可求得函數(shù)的解析式.【詳解】由已知可得.故選:C.9、B【解析】應(yīng)用誘導(dǎo)公式及正余弦的齊次式,將題設(shè)等式轉(zhuǎn)化為-tanα-1【詳解】sin(α-π)+∴-tanα-1=-3tan故選:B.10、B【解析】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,結(jié)合圖象可得則﹣1<m<0,故排除C,D,再分別令m=﹣,m=﹣,求出x1,x2,x3,驗證x22=x1?x3是否成立;【詳解】解:分別作出y=cosx,x∈(,3π)與y=m的圖象,如圖所示,方程cosx=m在區(qū)間(,3π)上恰有三個解x1,x2,x3(x1<x2<x3),則﹣1<m<0,故排除C,D,當(dāng)m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2≠x1?x3=π2,故A錯誤,當(dāng)m=﹣時,此時cosx=﹣在區(qū)間(,3π),解得x1=π,x2=π,x3=π,則x22=π2=x1?x3=π2,故B正確,故選B【點(diǎn)睛】本題考查了三角函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合的思想和函數(shù)與方程的思想,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】先求出,然后再求的值.【詳解】由題意可得,所以,故答案為:12、【解析】先求出函數(shù)定義域,再換元,利用復(fù)合函數(shù)單調(diào)性的求法求解【詳解】由,得,所以函數(shù)的定義域為,令,則,因為在上遞增,在上遞減,而在上為增函數(shù),所以在上遞增,在上遞減,故答案為:13、##0.75【解析】根據(jù)條件求出,,再代入即可求解.【詳解】因為的圖象過原點(diǎn),所以,即.又因為的圖象無限接近直線,但又不與該直線相交,所以,,所以,所以故答案為:14、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復(fù)合函數(shù)同增異減的性質(zhì)求解對應(yīng)的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點(diǎn)睛】一般關(guān)于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.15、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點(diǎn)睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標(biāo)公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復(fù)雜的平面向量數(shù)量積的運(yùn)算時,可先利用平面向量數(shù)量積的運(yùn)算律或相關(guān)公式進(jìn)行化簡.16、(1),定義域為或;(2).【解析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出的最小值,即可得出結(jié)果.【詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當(dāng)時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【點(diǎn)睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,;(2).【解析】(1)選①②,根據(jù)條件可求得函數(shù)的最小正周期,可求得的值,由②結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;選①③,根據(jù)條件可求得函數(shù)的最小正周期,可求得的值,由③結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;選②③,分別由②、③可得出關(guān)于的表達(dá)式,兩式作差可得出關(guān)于的等式,結(jié)合的取值范圍可求得的值,再由②結(jié)合的取值范圍,可求得的值,即可得出函數(shù)的解析式;(2)利用三角函數(shù)圖象變換求得,由,得,分析可知函數(shù),的值域為,由此可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【小問1詳解】解:設(shè)函數(shù)的最小正周期為,若選擇①②,由①知,由②知,即,則,解得,又因為,所以,所以若選擇①③,由①知,,由③知,解得又因為,所以,所以若選擇②③,由②知,即,所以,由③知兩式相減得,所以,因為,所以當(dāng)時,,又因為,所以,所以【小問2詳解】解:將向右平移個單位后得再把得到的函數(shù)圖像上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),得到函數(shù),由,得因為的值域為,所以,的值域為所以,即.所以實數(shù)的取值范圍為18、(1)最小正周期為,最大值.(2)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為【解析】(1)利用三角恒等變換化簡函數(shù)解析式為,利用正弦型函數(shù)的周期公式以及正弦函數(shù)的有界性可求得結(jié)果;(2)求得,利用余弦型函數(shù)的基本性質(zhì)可求得函數(shù)的增區(qū)間和減區(qū)間.小問1詳解】解:.所以,的最小正周期.當(dāng)時,取得最大值【小問2詳解】解:由(1)知,又,由,解得,所以,函數(shù)的單調(diào)增區(qū)間為.由,解得.所以,函數(shù)的單調(diào)減區(qū)間為.19、(1)(–5,–4)(2)【解析】(1)設(shè)點(diǎn),根據(jù)題意寫出關(guān)于的方程組,得到點(diǎn)坐標(biāo);(2)由兩點(diǎn)間距離公式求出,再由兩點(diǎn)得到直線的方程,利用點(diǎn)到直線的距離公式,求出點(diǎn)到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設(shè)點(diǎn),根據(jù)AC邊的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上,根據(jù)中點(diǎn)公式,可得,解得,所以點(diǎn)的坐標(biāo)是(2)因為,得,所以直線的方程為,即,故點(diǎn)到直線的距離,所以的面積【點(diǎn)睛】本題考查中點(diǎn)坐標(biāo)公式,兩點(diǎn)間距離公式,點(diǎn)到直線的距離公式,屬于簡單題.20、(1)函數(shù)在區(qū)間是遞增函數(shù);證明見解析;(2)或【解析】(1)由奇函數(shù)定義建立方程組可求出,再用定義法證明單調(diào)性即可;(2)根據(jù)復(fù)合函數(shù)的單調(diào)性,分類討論的單調(diào)性,結(jié)合函數(shù)的單調(diào)性研究最值即可求解【詳解】(1)∵是奇函數(shù),∴,又,且,所以,,經(jīng)檢驗,滿足題意得,所以函數(shù)在區(qū)間是遞增函數(shù)證明如下:且,所以有:由,得,,又,故,所以,即,所以函數(shù)在區(qū)間是遞增函數(shù)(2)令,由(1)可得在區(qū)間遞增函數(shù),①當(dāng)時,是減函數(shù),故當(dāng)取得最小值時,(且)取得最大值2,在區(qū)間的最小值為,故的最大值是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年國家電網(wǎng)招聘之通信類考試題庫300道附答案【典型題】
- 深圳市深汕特別合作區(qū)引進(jìn)基層醫(yī)療人才11人考試題庫附答案
- 2026年投資項目管理師之宏觀經(jīng)濟(jì)政策考試題庫300道附參考答案【鞏固】
- 寧波市大榭街道招聘編外工作人員考試題庫附答案
- 2026年教師資格之中學(xué)教育知識與能力考試題庫300道及答案(名師系列)
- 2026年咨詢工程師考試題庫300道附完整答案【網(wǎng)校專用】
- 東莞市步步高實驗幼兒園校園招聘考試題庫附答案
- 2025年福建泉州惠安縣宏福殯儀服務(wù)有限公司招聘5人考試備考題庫附答案
- 2026年注冊安全工程師題庫300道【達(dá)標(biāo)題】
- 2026年監(jiān)理工程師之交通工程目標(biāo)控制考試題庫300道及完整答案【奪冠系列】
- 佛協(xié)財務(wù)管理制度
- 2026屆新高考語文熱點(diǎn)復(fù)習(xí):賞析散文形象
- 2025年新能源汽車實訓(xùn)基地建設(shè)方案范文
- 采暖系統(tǒng)工程監(jiān)理實施細(xì)則
- 湖北省武漢市江岸區(qū)2024-2025學(xué)年上學(xué)期元調(diào)九年級物理試題(含答案)
- 常用低壓電器-繼電器 學(xué)習(xí)課件
- QC成果提高PP-R給水管道安裝一次驗收合格率
- 江蘇省2025年普通高中學(xué)業(yè)水平合格性考試模擬英語試題三(解析版)
- 中央財經(jīng)大學(xué)《微積分Ⅰ(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 停運(yùn)損失費(fèi)賠償協(xié)議書模板
- 文獻(xiàn)信息檢索與利用學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論