版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市東昌中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與的等差中項(xiàng)是()A. B.C. D.2.已知是定義在上的函數(shù),其導(dǎo)函數(shù)為,且,且,則不等式的解集為()A. B.C. D.3.若方程表示焦點(diǎn)在軸上的雙曲線,則角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限4.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.5.已知圓與直線,則圓上到直線的距離為1的點(diǎn)的個數(shù)是()A.1 B.2C.3 D.46.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個數(shù)是()A.1 B.2C.3 D.47.已知,分別是圓和圓上的動點(diǎn),點(diǎn)在直線上,則的最小值是()A. B.C. D.8.某高中學(xué)校高二和高三年級共有學(xué)生人,為了解該校學(xué)生的視力情況,現(xiàn)采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學(xué)生人數(shù)為()A. B.C. D.9.已知雙曲線的右焦點(diǎn)為F,雙曲線C的右支上有一點(diǎn)P滿是(點(diǎn)O為坐標(biāo)原點(diǎn)),那么雙曲線C的離心率為()A. B.C. D.10.設(shè)命題,則為A. B.C. D.11.過原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.12.若雙曲線與橢圓有公共焦點(diǎn),且離心率,則雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國南北朝時期的數(shù)學(xué)家祖暅提出了一個原理“冪勢既同,則積不容異”,即夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個半徑為2的半圓,則該幾何體的體積為________.14.已知直線與圓交于兩點(diǎn),則面積的最大值為__________.15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為________16.在數(shù)列中,,,記是數(shù)列的前項(xiàng)和,則=___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過點(diǎn),且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點(diǎn)且斜率的直線與圓心的軌跡交于兩點(diǎn),求線段的長度18.(12分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.19.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設(shè)P是直線上的動點(diǎn),證明:以MP為直徑的圓必過定點(diǎn),并求所有定點(diǎn)的坐標(biāo).20.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)數(shù)列前項(xiàng)和為,且滿足,求的表達(dá)式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.21.(12分)已知點(diǎn),直線:,直線m過點(diǎn)N且與垂直,直線m交圓于兩點(diǎn)A,B.(1)求直線m的方程;(2)求弦AB的長.22.(10分)有一種魚的身體吸收汞,當(dāng)這種魚身體中的汞含量超過其體重的1.00ppm(即百萬分之一)時,人食用它,就會對人體產(chǎn)生危害.現(xiàn)從一批該魚中隨機(jī)選出30條魚,檢驗(yàn)魚體中的汞含量與其體重的比值(單位:ppm),數(shù)據(jù)統(tǒng)計(jì)如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述數(shù)據(jù)的眾數(shù),并估計(jì)這批魚該項(xiàng)數(shù)據(jù)的80%分位數(shù);(2)有A,B兩個水池,兩水池之間有8個完全相同的小孔聯(lián)通,所有的小孔均在水下,且可以同時通過2條魚①將其中汞的含量最低的2條魚分別放入A水池和B水池中,若這2條魚的游動相互獨(dú)立,均有的概率進(jìn)入另一水池且不再游回,求這兩條魚最終在同一水池的概率;②將其中汞的含量最低的2條魚都先放入A水池中,若這2條魚均會獨(dú)立地且等可能地從其中任意一個小孔由A水池進(jìn)入B水池且不再游回A水池,求這兩條魚由不同小孔進(jìn)入B水池的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】代入等差中項(xiàng)公式即可解決.【詳解】與的等差中項(xiàng)是故選:A2、B【解析】令,再結(jié)合,和已知條件將問題轉(zhuǎn)化為,最后結(jié)合單調(diào)性求解即可.【詳解】解:令,則,因?yàn)?,所以,即函?shù)為上的增函數(shù),因?yàn)椋坏仁娇苫癁?,所以,故不等式的解集為故選:B3、D【解析】根據(jù)題意得出的符號,進(jìn)而得到的象限.【詳解】由題意,,所以在第四象限.故選:D.4、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B5、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點(diǎn)有兩個.故選:B.6、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關(guān)于原點(diǎn)及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因?yàn)椋?,所以,所以,所以由曲線的對稱性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點(diǎn)的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點(diǎn),由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點(diǎn),所以曲線C上只有1個整點(diǎn)(0,0),所以④錯誤,故選:B7、B【解析】由已知可得,,求得關(guān)于直線的對稱點(diǎn)為,則,計(jì)算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對稱點(diǎn)為,則解得,則因?yàn)?,分別在圓和圓上,所以,,則因?yàn)?,所以故選:B.8、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進(jìn)行求解.【詳解】設(shè)高一年級學(xué)生人數(shù)為,因?yàn)閺娜齻€年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學(xué)生人數(shù)為.故選:B9、D【解析】分析焦點(diǎn)三角形即可【詳解】如圖,設(shè)左焦點(diǎn)為,因?yàn)?所以不妨設(shè),則離心率故選:D10、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項(xiàng)為C.11、A【解析】直線AC、BD與坐標(biāo)軸重合時求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點(diǎn)為橢圓頂點(diǎn)時,而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時,設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A12、A【解析】首先求出橢圓的焦點(diǎn)坐標(biāo),然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點(diǎn)坐標(biāo)為所以雙曲線的焦點(diǎn)在軸上,,因?yàn)椋?,所以雙曲線的標(biāo)準(zhǔn)方程為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐的側(cè)面展開圖是一個半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長為l,高為h,底面半徑為r,因?yàn)閳A錐的側(cè)面展開圖是一個半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:14、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過原點(diǎn)的直線,如圖,連接,故,解得,此時,故的面積為,當(dāng)且僅當(dāng)時等號成立,此時即,故答案為:.15、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因?yàn)榕c軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.16、930【解析】當(dāng)為偶數(shù)時,,所以數(shù)列前60項(xiàng)中偶數(shù)項(xiàng)的和,當(dāng)為奇數(shù)時,,因此數(shù)列是以1為首項(xiàng),公差為2等差數(shù)列,前60項(xiàng)中奇數(shù)項(xiàng)的和為,所以.考點(diǎn):遞推數(shù)列、等差數(shù)列.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長.【詳解】解:(1)圓過點(diǎn),且與直線相切點(diǎn)到直線的距離等于由拋物線定義可知點(diǎn)的軌跡是以為焦點(diǎn)、以為準(zhǔn)線的拋物線,依題意,設(shè)點(diǎn)的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設(shè)聯(lián)立,得,則,所以,線段的長度為【點(diǎn)睛】(1)待定系數(shù)法、代入法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.18、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導(dǎo),根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構(gòu)造一個關(guān)于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利用導(dǎo)數(shù)研究函數(shù)在上的單調(diào)性,比較極值和端點(diǎn)值的大小,即可得出在上的最大值與最小值.【詳解】解:(1)由題可知,,的定義域?yàn)?,,由于在處有極值,則,即,解得:,,(2)由(1)可知,其定義域是,,令,而,解得,由,得;由,得,則在區(qū)間上,,,的變化情況表如下:120單調(diào)遞減單調(diào)遞增可得,,,由于,則,所以,函數(shù)在區(qū)間上的最大值為,最小值為.【點(diǎn)睛】本題考查已知極值求參數(shù)值和函數(shù)在閉區(qū)間內(nèi)的最值問題,考查利用導(dǎo)函數(shù)研究函數(shù)在給定閉區(qū)間內(nèi)的單調(diào)性,以及通過比較極值和端點(diǎn)值確定函數(shù)在閉區(qū)間內(nèi)的最值,考查運(yùn)算能力.19、(1);(2)證明見解析,定點(diǎn)和.【解析】(1)根據(jù)給定條件設(shè)出圓心坐標(biāo),再結(jié)合點(diǎn)到直線距離公式計(jì)算作答.(2)設(shè)點(diǎn),求出圓的方程,結(jié)合方程求出其定點(diǎn).【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設(shè)圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設(shè)點(diǎn),,設(shè)動圓上任意一點(diǎn)當(dāng)與點(diǎn)P,M都不重合時,,有,當(dāng)與點(diǎn)P,M之一重合時,對應(yīng)為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點(diǎn)和.【點(diǎn)睛】方法點(diǎn)睛:待定系數(shù)法求圓的方程,由題設(shè)條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨(dú)立參數(shù),所以應(yīng)該有三個獨(dú)立等式20、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項(xiàng)相消法可得出的表達(dá)式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當(dāng)n=1時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物資進(jìn)校園管理制度(3篇)
- 礦區(qū)內(nèi)車輛管理制度范本(3篇)
- 銀行策劃活動方案線上(3篇)
- 《GAT 843-2009唾液酒精檢測試紙條》專題研究報告
- 養(yǎng)老院情感交流制度
- 養(yǎng)老院安全防范與應(yīng)急處理制度
- 企業(yè)內(nèi)部保密工作管理制度
- 2026年及未來5年市場數(shù)據(jù)中國地板整修制品行業(yè)市場深度分析及投資策略研究報告
- 2026湖北武漢格魯伯實(shí)驗(yàn)學(xué)校招聘3人參考題庫附答案
- 2026福建廈門市集美區(qū)樂安中學(xué)(集大附中)非在編教職工招聘5人參考題庫附答案
- 2026中國煙草總公司鄭州煙草研究院高校畢業(yè)生招聘19人備考題庫(河南)及1套完整答案詳解
- 2026年甘肅省蘭州市皋蘭縣蘭泉污水處理有限責(zé)任公司招聘筆試參考題庫及答案解析
- 陶瓷工藝品彩繪師崗前工作標(biāo)準(zhǔn)化考核試卷含答案
- 2025年全國高壓電工操作證理論考試題庫(含答案)
- 居間合同2026年工作協(xié)議
- 2025-2026學(xué)年(通*用版)高二上學(xué)期期末測試【英語】試卷(含聽力音頻、答案)
- 翻車機(jī)工操作技能水平考核試卷含答案
- 醫(yī)療機(jī)構(gòu)信息安全建設(shè)與風(fēng)險評估方案
- 員工宿舍安全培訓(xùn)資料課件
- 化工設(shè)備培訓(xùn)課件教學(xué)
- 舞臺燈光音響控制系統(tǒng)及視頻顯示系統(tǒng)安裝施工方案
評論
0/150
提交評論