版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆陜西省渭南市三賢中學數(shù)學高二上期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若,則的取值范圍為()A. B.C. D.2.已知隨機變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27183.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.94.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動標識(圖1),標識由黨徽、數(shù)字“100”“1921”“2021”和56根光芒線組成,生動展現(xiàn)中國共產(chǎn)黨團結(jié)帶領(lǐng)中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設(shè)計為兩個半徑為的相交大圓,分別內(nèi)含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.5.已知空間中三點,,,則下列結(jié)論中正確的有()A.平面ABC的一個法向量是 B.的一個單位向量的坐標是C. D.與是共線向量6.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為7.若拋物線上一點到焦點的距離為5,則點的坐標為()A. B.C. D.8.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值9.已知實數(shù)x,y滿足,則的取值范圍是()A. B.C. D.10.已知隨機變量服從正態(tài)分布,,則()A. B.C. D.11.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知,則在方向上的投影為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點為F,準線為l,C上的一點M在l上的射影為N,已知線段FN的垂直平分線方程為,則___________;___________.14.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形15.若雙曲線的漸近線與圓相切,則該雙曲線的實軸長為______16.將某校全體高一年級學生期末數(shù)學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調(diào)查,采用按成績分層隨機抽樣,則應(yīng)抽取成績不少于60分的學生人數(shù)為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,,,M為上一點,且(1)求點到平面的距離;(2)求二面角的余弦值18.(12分)已知點A(,0),點C為圓B:(B為圓心)上一動點,線段AC的垂直平分線與直線BC交于點G(1)設(shè)點G的軌跡為曲線T,求曲線T的方程;(2)若過點P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點,求△MNO面積的最大值19.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.20.(12分)設(shè)正項數(shù)列的前項和為,已知,(1)求數(shù)列的通項公式;(2)數(shù)列滿足,數(shù)列的前項和為,若不等式對一切恒成立,求的取值范圍21.(12分)為了保證我國東海油氣田海域海上平臺的生產(chǎn)安全,海事部門在某平臺O的北偏西45°方向km處設(shè)立觀測點A,在平臺O的正東方向12km處設(shè)立觀測點B,規(guī)定經(jīng)過O、A、B三點的圓以及其內(nèi)部區(qū)域為安全預警區(qū).如圖所示:以O(shè)為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經(jīng)觀測發(fā)現(xiàn),在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內(nèi)會行駛多長時間?22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,由為原點到直線上點的距離的平方,再根據(jù)點到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點到直線上點的距離的平方,根據(jù)點到直線垂線段最短,可得,所有的取值范圍為,故選:C.2、C【解析】根據(jù)正態(tài)分布的對稱性可求概率.【詳解】由題設(shè)可得,,故選:C.3、B【解析】先求得直線過定點,再根據(jù)當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B4、B【解析】求出兩圓相交公共部分兩個弓形面積,結(jié)合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標,四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B5、A【解析】根據(jù)已知條件,結(jié)合空間中平面法向量的定義,向量模長的求解,以及共線定理,對每個選項進行逐一分析,即可判斷和選擇.【詳解】因為,,,故可得,因為,故,不平行,則D錯誤;對A:不妨記向量為,則,又,不平行,故向量是平面的法向量,則A正確;對B:因為向量的模長為,其不是單位向量,故B錯誤;對C:因為,故可得,故C錯誤;故選:A.6、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D7、C【解析】設(shè),由拋物線的方程可得準線方程為,由拋物線的性質(zhì)到焦點的距離等于到準線的距離,求出,解出縱坐標,進而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標,故選:C.8、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當時,,單調(diào)遞減.當時,,單調(diào)遞增.所以當時,取得極小值,極小值為,無極大值.故選:B9、B【解析】實數(shù),滿足,通過討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點到直線距離范圍的2倍,求出切線方程根據(jù)平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因為實數(shù),滿足,所以當時,,其圖象是位于第一象限,焦點在軸上的雙曲線的一部分(含點),當時,其圖象是位于第四象限,焦點在軸上的橢圓的一部分,當時,其圖象不存在,當時,其圖象是位于第三象限,焦點在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點到直線的距離所以,結(jié)合圖象可得的范圍就是圖象上一點到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過圖形可得當曲線上一點位于時,取得最小值,無最大值,小于兩平行線與之間的距離的倍,設(shè)與其圖像在第一象限相切于點,由因為或(舍去)所以直線與直線的距離為此時,所以的取值范圍是故選:B【點睛】三種距離公式:(1)兩點間的距離公式:平面上任意兩點間的距離公式為;(2)點到直線的距離公式:點到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.10、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點睛】本題考查的知識要點:正態(tài)分布的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題11、B【解析】因但12、C【解析】利用向量數(shù)量積的幾何意義即得【詳解】,故在方向上的投影為:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.2②.4【解析】設(shè)點,根據(jù)給定條件結(jié)合拋物線定義可得線段FN的中點及點M都在線段FN的垂直平分線,再列式計算作答.【詳解】拋物線的焦點,準線l:,設(shè)點,則,線段FN的中點,由拋物線定義知:,即點M在線段FN的垂直平分線,因此,,解得,而,則有,,所以,.故答案為:2;4【點睛】結(jié)論點睛:拋物線方程中,字母p的幾何意義是拋物線的焦點F到準線的距離,等于焦點到拋物線頂點的距離14、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設(shè)曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.15、【解析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點線距離公式求參數(shù)a,即可確定實軸長.【詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實軸長為.故答案為:16、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結(jié)果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調(diào)查,利用樣本估計總體的思想,則應(yīng)抽取成績不少于60分的學生人數(shù)為人故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問1詳解】以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點到平面的距離【小問2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為18、(1)(2)1【解析】(1)可由題意,點G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點G的軌跡為橢圓,然后利用已知的長度關(guān)系求解出橢圓方程;(2)可通過設(shè)l的方程,利用l是圓O的切線,通過點到直線的距離得到一組等量關(guān)系,然后將直線與橢圓聯(lián)立方程,計算弦長,表示出△MNO面積的表達式,將上面得到的等量關(guān)系代入利用基本不等式即可求解出最值.【小問1詳解】依題意有,,即G點軌跡是以A,B為焦點的橢圓,設(shè)橢圓方程為由題意可知,,則,,所以曲線T的方程為【小問2詳解】設(shè),,設(shè)直線l的方程為,因為直線l與圓相切,所以,即,聯(lián)立直線l與橢圓的方程,整理得,,由韋達定理可得,,所以,又點O到直線l的距離為1,所以當且僅當,即時,取等號,所以的面積的最大值為119、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.20、(1);(2).【解析】(1)利用的關(guān)系求的通項公式;(2)由(1)得,應(yīng)用錯位相減法求,根據(jù)不等式,討論n的奇偶性求參數(shù)范圍即可.【小問1詳解】由題設(shè),當時,則,整理得,,則,當時,,又得:,故,所以數(shù)列是首項、公差均為2的等差數(shù)列,故.【小問2詳解】由(1),,所以,,兩式相減得,故,所以令,易知:單調(diào)遞增,若為偶數(shù),則,所以;若為奇數(shù),則,所以,即綜上,21、(1);(2)會駛?cè)氚踩A警區(qū),行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經(jīng)過三點的圓的方程,設(shè)輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區(qū)內(nèi)行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設(shè)圓的方程為,因為該圓經(jīng)過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設(shè)輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣東廣州市醫(yī)藥職業(yè)學校招聘臨時代課教師3人參考考試題庫附答案解析
- 2026年遼寧省文物考古研究院面向社會公開招聘工作人員招聘參考考試試題附答案解析
- 超市全員安全生產(chǎn)制度
- 生產(chǎn)車間勞保管理制度
- 中空玻璃生產(chǎn)制度
- 2026天津大學出版社有限責任公司招聘4人參考考試題庫附答案解析
- 無人機生產(chǎn)安全管理制度
- 生產(chǎn)職業(yè)安全管理制度
- 管道工安全生產(chǎn)責任制度
- 鑄造業(yè)安全生產(chǎn)檢查制度
- 江蘇省連云港市2024-2025學年第一學期期末調(diào)研考試高二歷史試題
- 文化館安全生產(chǎn)制度
- (2025年)保安員(初級)證考試題庫及答案
- 2026年浙江省軍士轉(zhuǎn)業(yè)崗位履職能力考點練習題及答案
- 安全設(shè)備設(shè)施安裝、使用、檢驗、維修、改造、驗收、報廢管理制度
- 2026屆四川省成都市2023級高三一診英語試題(附答案和音頻)
- 《煤礦安全規(guī)程(2025)》防治水部分解讀課件
- 2025至2030中國新癸酸縮水甘油酯行業(yè)項目調(diào)研及市場前景預測評估報告
- JJF 2333-2025恒溫金屬浴校準規(guī)范
- 員工自互檢培訓
- (2025年)司法考試法理學歷年真題及答案
評論
0/150
提交評論