版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆甘肅省蘭州市第五中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點(diǎn),且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π2.已知函數(shù)滿足對(duì)于恒成立,設(shè)則下列不等關(guān)系正確是()A. B.C. D.3.設(shè)是雙曲線的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在上且,則的面積為()A. B.3C. D.24.直線的傾斜角為()A.30° B.60°C.90° D.120°5.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.6.若方程表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)m的取值范圍為()A. B.C. D.且7.橢圓的焦點(diǎn)為、,上頂點(diǎn)為,若,則()A B.C. D.8.已知雙曲線的右焦點(diǎn)為,漸近線為,,過(guò)的直線與垂直,且交于點(diǎn),交于點(diǎn),若,則雙曲線的離心率為()A. B.C.2 D.9.已知實(shí)數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.510.?dāng)?shù)列,,,,…,的通項(xiàng)公式可能是()A. B.C. D.11.已知,則方程與在同一坐標(biāo)系內(nèi)對(duì)應(yīng)的圖形編號(hào)可能是()A.①④ B.②③C.①② D.③④12.直線與曲線相切于點(diǎn),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.分別過(guò)橢圓的左、右焦點(diǎn)、作兩條互相垂直的直線、,它們的交點(diǎn)在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________14.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實(shí)數(shù),求的最小值;(3)若,當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)b的值.15.如圖,棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對(duì)角線上一個(gè)動(dòng)點(diǎn),則三棱錐的外接球表面積的最小值為_(kāi)__________.16.用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù),其中個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有n個(gè),則的展開(kāi)式中,的系數(shù)是___________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明,,;(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.19.(12分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍20.(12分)已知數(shù)列的前項(xiàng)的和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(diǎn)(1)證明:平面;(2)求二面角的正弦值22.(10分)如圖,在多面體ABCDEF中,四邊形ABCD是菱形,∠ABC=60°,F(xiàn)A⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求證:平面FAC⊥平面EFC;(2)求多面體ABCDEF的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】取中點(diǎn),連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計(jì)算可得【詳解】取中點(diǎn),連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點(diǎn),則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補(bǔ)成一個(gè)正方體,正方體的對(duì)角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C2、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項(xiàng)的對(duì)錯(cuò).【詳解】設(shè),則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯(cuò),令(),則,當(dāng)時(shí),,當(dāng)時(shí),∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯(cuò),,故,所以,A對(duì),,故,所以,B錯(cuò),故選:A.3、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【詳解】由已知,不妨設(shè),則,因?yàn)?,所以點(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問(wèn)題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.4、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計(jì)算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B5、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據(jù)離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C6、A【解析】根據(jù)雙曲線定義,且焦點(diǎn)在y軸上,則可直接列出相關(guān)不等式.【詳解】若方程表示焦點(diǎn)在y軸上的雙曲線,則必有:,且解得:故選:7、C【解析】分析出為等邊三角形,可得出,進(jìn)而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因?yàn)闄E圓的上頂點(diǎn)為點(diǎn),焦點(diǎn)為、,所以,,為等邊三角形,則,即,因此,.故選:C.8、C【解析】由題設(shè)易知是的中垂線,進(jìn)而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對(duì)稱性得,則,故,∴.故選:C.9、B【解析】畫(huà)出可行域,找到最優(yōu)解,得最值.【詳解】畫(huà)出不等式組對(duì)應(yīng)的可行域如下:平行移動(dòng)直線,當(dāng)直線過(guò)點(diǎn)時(shí),.故選:B.10、D【解析】利用數(shù)列前幾項(xiàng)排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項(xiàng)公式可以為,故選:D11、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對(duì)①②③④分析m、n的正負(fù),即可得到答案.【詳解】對(duì)于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號(hào),矛盾.故①錯(cuò)誤;對(duì)于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號(hào),符合要求.故②成立;對(duì)于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號(hào),且拋物線的焦點(diǎn)在x軸上,符合要求.故③成立;對(duì)于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號(hào),且拋物線的焦點(diǎn)在x軸上,矛盾.故④錯(cuò)誤;故選:B12、A【解析】直線與曲線相切于點(diǎn),可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點(diǎn)將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點(diǎn)睛】本題考查了根據(jù)切點(diǎn)求參數(shù)問(wèn)題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒(méi)有交點(diǎn),即,即,,即.故填:.【點(diǎn)睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是常考題型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.14、(1),;(2);(3)【解析】(1)根據(jù)韋達(dá)定理解求得答案;(2)根據(jù)題意,,進(jìn)而化簡(jiǎn),然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進(jìn)而分參轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,最后求得答案.【小問(wèn)1詳解】由已知可知方程的兩個(gè)根為,2,由韋達(dá)定理得,,故,.【小問(wèn)2詳解】由題意得,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).【小問(wèn)3詳解】若,,不等式恒成立.當(dāng)時(shí),,此時(shí),即對(duì)于恒成立,單調(diào)遞減,此時(shí),,所以;當(dāng)時(shí),,此時(shí),即即對(duì)于恒成立,在單調(diào)遞減,此時(shí),所以;當(dāng)x=2時(shí),.綜上所述:.15、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時(shí),,為最小值,外接球表面積最小值為.故答案為:.16、2022【解析】根據(jù)排列和組合計(jì)數(shù)公式求出,然后利用二項(xiàng)式定理進(jìn)行求解即可【詳解】解:用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)中,滿足個(gè)位小于百位且百位小于萬(wàn)位的五位數(shù)有個(gè),即,當(dāng)時(shí),,則系數(shù)是,故答案為:2022三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個(gè)極值點(diǎn),則在上有根.再分,與,利用函數(shù)的零點(diǎn)存在定理討論導(dǎo)函數(shù)的零點(diǎn)即可.【詳解】(1)證明:當(dāng)時(shí),,則,當(dāng)時(shí),,則,又因?yàn)?所以當(dāng)時(shí),,僅時(shí),,所以在上是單調(diào)遞減,所以,即.(2),因?yàn)?所以,①當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,沒(méi)有極值點(diǎn).②當(dāng)時(shí),在區(qū)間上單調(diào)遞增,因?yàn)?當(dāng)時(shí),,所以在上單調(diào)遞減,沒(méi)有極值點(diǎn).當(dāng)時(shí),,所以存在,使當(dāng)時(shí),時(shí),所以在處取得極小值,為極小值點(diǎn).綜上可知,若函數(shù)在上存在極值點(diǎn),則實(shí)數(shù).【點(diǎn)睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)極值點(diǎn)的問(wèn)題,需要結(jié)合零點(diǎn)存在定理求解.屬于難題.18、(1)答案見(jiàn)解析(2)【解析】(1)求導(dǎo)數(shù),然后對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實(shí)數(shù)的取值范圍.【小問(wèn)1詳解】解:求導(dǎo)可得①時(shí),令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時(shí),令可得;令,得或,由于知或;∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;③時(shí),,函數(shù)在上單調(diào)遞增;④時(shí),令可得;令,得或,由于知或∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;【小問(wèn)2詳解】由(1)時(shí),,(不符合,舍去)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)在處取得最小值,所以函數(shù)對(duì)定義域內(nèi)的任意x恒成立時(shí),只需要即可∴.綜上,.19、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問(wèn)題等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問(wèn)1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項(xiàng)公式分別是:,.【小問(wèn)2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項(xiàng)和.【小問(wèn)3詳解】由(1)知,,依題意得對(duì)任意恒成立,設(shè),則,當(dāng),,為單調(diào)遞減數(shù)列,當(dāng),,為單調(diào)遞增數(shù)列,顯然有,則當(dāng)時(shí),取得最大值,即最大值是,因此,,所以實(shí)數(shù)k取值范圍是.【點(diǎn)睛】思路點(diǎn)睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解20、(1);(2).【解析】(1)根據(jù),并結(jié)合等比數(shù)列的定義即可求得答案;(2)結(jié)合(1),并通過(guò)錯(cuò)位相減法即可求得答案.【小問(wèn)1詳解】當(dāng)時(shí),,當(dāng)時(shí),,是以2為首項(xiàng),2為公比的等比數(shù)列,.【小問(wèn)2詳解】,…①…②①-②得,.21、(1)證明見(jiàn)解析(2)【解析】(1)設(shè),線段的中點(diǎn)為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量和平面的一個(gè)法向量后可求二面角的余弦值.【小問(wèn)1詳解】證明:設(shè),線段的中點(diǎn)為H,分別連接又因?yàn)镚是的中點(diǎn),所以因?yàn)樗倪呅螢榫匦?,?jù)菱形性質(zhì)知,O為的中點(diǎn),所以,且,所以,且,所以四邊形是平行四邊形,所以又因?yàn)槠矫?,平面,所以平面【小?wèn)2詳解】解:據(jù)四邊形是菱形的性質(zhì)知,又因?yàn)槠矫嫫矫?,平面,平面平面,故平面,所以以分別為x軸,y軸,以過(guò)與的交點(diǎn)O,且垂直于平面的直線為z軸建立空間直角坐標(biāo)系如圖所示,則有,所以設(shè)平面的一個(gè)法向量,則令,則,且,所以設(shè)平面的一個(gè)法向量,則令,則,且,所以所以,所以二面角的正弦值為22、(1)證明見(jiàn)解析;(2).【解析】(1)連接BD交AC于點(diǎn)O,設(shè)FC的中點(diǎn)為P,連接OP,EP,證明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱錐和四棱錐的體積即可計(jì)算作答.【小問(wèn)1詳解】連接BD交AC于點(diǎn)O,設(shè)FC的中點(diǎn)為P,連接OP,EP,如圖,菱形ABCD中,O為AC的中點(diǎn),則OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四邊形OPED
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教師資格之中學(xué)教育知識(shí)與能力提升訓(xùn)練試卷B卷附答案
- 山西省晉中市榆社縣2026屆九年級(jí)上學(xué)期1月期末考試道德與法治試卷(含答案)
- 安全防護(hù)培訓(xùn)工作要求課件
- 2026年烏魯木齊市第十三中棟梁校區(qū)招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 2026年?yáng)|電三公司社會(huì)招聘?jìng)淇碱}庫(kù)-工程管理部及一套完整答案詳解
- 2026年護(hù)理年度工作計(jì)劃
- 2025年老年病康復(fù)科護(hù)理年底工作總結(jié)及2026年工作計(jì)劃
- 2026屆河北省名校聯(lián)盟高考一模地理試題(含答案)
- 2026年京津人才發(fā)展(天津)有限公司招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 2026年四川長(zhǎng)虹精密電子科技有限公司關(guān)于招聘質(zhì)量工程師崗位的備考題庫(kù)及參考答案詳解
- 低空智能-從感知推理邁向群體具身
- 2026屆八省聯(lián)考(T8聯(lián)考)2026屆高三年級(jí)12月檢測(cè)訓(xùn)練生物試卷(含答案詳解)
- 血液管理系統(tǒng)培訓(xùn)課件
- 四川省2025年高職單招職業(yè)技能綜合測(cè)試(中職類)電子信息類試卷
- 2026貴州安創(chuàng)數(shù)智科技有限公司社會(huì)公開(kāi)招聘119人筆試考試參考試題及答案解析
- 2025中原農(nóng)業(yè)保險(xiǎn)股份有限公司招聘67人參考筆試試題及答案解析
- 2025年熔化焊接與熱切割作業(yè)考試題庫(kù)及答案
- 質(zhì)量互變課件
- 公安刑事案件辦理課件
- 幼兒園重大事項(xiàng)社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估制度(含實(shí)操模板)
- 淺談現(xiàn)代步行街的改造
評(píng)論
0/150
提交評(píng)論