2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題含解析_第1頁
2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題含解析_第2頁
2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題含解析_第3頁
2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題含解析_第4頁
2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆北京市海淀區(qū)數(shù)學高一上期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設a為實數(shù),“”是“對任意的正數(shù)x,”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件2.已知,則函數(shù)與函數(shù)的圖象可能是()A. B.C. D.3.已知是偶函數(shù),它在上是減函數(shù).若,則的取值范圍是()A. B.C. D.4.設,則“”是“”的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件5.我國著名數(shù)學家華羅庚曾說:數(shù)缺形時少直觀,形少數(shù)時難人微,數(shù)形結(jié)合百般好,割裂分家萬事休.在數(shù)學的學習和研究中,有時可憑借函數(shù)的解析式琢磨函數(shù)圖像的特征.如函數(shù),的圖像大致為()A. B.C. D.6.已知點是角α的終邊與單位圓的交點,則()A. B.C. D.7.設f(x)為偶函數(shù),且在區(qū)間(-∞,0)上是增函數(shù),,則xf(x)<0解集為()A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞) D.(-2,0)∪(0,2)8.函數(shù)的零點在A. B.C. D.9.指數(shù)函數(shù)在R上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.10.已知角的終邊上一點,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知非零向量、滿足,若,則、夾角的余弦值為_________.12.已知函數(shù),若方程有4個不同的實數(shù)根,則的取值范圍是____13.已知,且,則的最小值為__________.14.已知,且.(1)求的值;(2)求的值.15.計算:________.16.下列說法中,所有正確說法的序號是__________①終邊落在軸上角的集合是;②函數(shù)圖象一個對稱中心是;③函數(shù)在第一象限是增函數(shù);④為了得到函數(shù)的圖象,只需把函數(shù)的圖象向右平移個單位長度三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入a(單位:萬元)滿足P=3-6,乙城市收益Q與投入a(單位:萬元)滿足Q=a+2,設甲城市的投入為x(單位:萬元),兩個城市的總收益為f(x)(單位:萬元).(1)當甲城市投資50萬元時,求此時公司的總收益;(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?18.已知函數(shù).(1)求最小正周期;(2)當時,求的值域.19.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.20.(1)計算:(2)已知,,,,求的值21.已知函數(shù),.(1)求函數(shù)的值域;(2)若存在實數(shù),使得在上有解,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)題意利用基本不等式分別判斷充分性和必要性即可.【詳解】若,因為,則,當且僅當時等號成立,所以充分性成立;取,因為,則,當且僅當時等號成立,即時,對任意的正數(shù)x,,但,所以必要性不成立,綜上,“”是“對任意的正數(shù)x,”的充分非必要條件.故選:A.2、B【解析】條件化為,然后由的圖象確定范圍,再確定是否相符【詳解】,即.∵函數(shù)為指數(shù)函數(shù)且的定義域為,函數(shù)為對數(shù)函數(shù)且的定義域為,A中,沒有函數(shù)的定義域為,∴A錯誤;B中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞增,即,可能為1,∴B正確;C中,由圖象知指數(shù)函數(shù)單調(diào)遞減,即,單調(diào)遞增,即,不可能為1,∴C錯誤;D中,由圖象知指數(shù)函數(shù)單調(diào)遞增,即,單調(diào)遞減,即,不可能為1,∴D錯誤故選:B.【點睛】本題考查指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),確定這兩個的圖象與性質(zhì)是解題關鍵.3、C【解析】根據(jù)偶函數(shù)的性質(zhì)結(jié)合單調(diào)性可得,即可根據(jù)對數(shù)函數(shù)單調(diào)性解出不等式.【詳解】由于函數(shù)是偶函數(shù),由得,又因為函數(shù)在上是減函數(shù),所以在上是增函數(shù),則,即,解得.故選:C.4、B【解析】分別求出兩個不等式的的取值范圍,根據(jù)的取值范圍判斷充分必要性.【詳解】等價于,解得:;等價于,解得:,可以推出,而不能推出,所以是的必要不充分條件,所以“”是“”的必要不充分條件故選:B5、B【解析】根據(jù)題意求出函數(shù)的定義域并判斷出函數(shù)的奇偶性,再代入特殊值點即可判斷答案.【詳解】由題意,函數(shù)定義域為,,于是排除AD,又,所以C錯誤,B正確.故選:B.6、B【解析】根據(jù)余弦函數(shù)的定義直接進行求解即可.【詳解】因為點是角α的終邊與單位圓的交點,所以,故選:B7、C【解析】結(jié)合函數(shù)的性質(zhì),得到,畫出函數(shù)的圖象,結(jié)合圖象,即可求解.【詳解】根據(jù)題意,偶函數(shù)f(x)在(-∞,0)上為增函數(shù),又,則函數(shù)f(x)在(0,+∞)上為減函數(shù),且,函數(shù)f(x)的草圖如圖,又由,可得或,由圖可得-2<x<0或x>2,即不等式的解集為(-2,0)∪(2,+∞).故選:C.本題主要考查了函數(shù)的奇偶性與單調(diào)性的應用,其中解答中熟記函數(shù)的奇偶性與單調(diào)性,結(jié)合函數(shù)的圖象求解是解答的關鍵,著重考查推理與運算能力.8、B【解析】利用零點的判定定理檢驗所給的區(qū)間上兩個端點的函數(shù)值,當兩個函數(shù)值符號相反時,這個區(qū)間就是函數(shù)零點所在的區(qū)間.【詳解】函數(shù)定義域為,,,,,因為,根據(jù)零點定理可得,在有零點,故選B.【點睛】本題考查函數(shù)零點的判定定理,本題解題的關鍵是看出函數(shù)在所給的區(qū)間上對應的函數(shù)值的符號,此題是一道基礎題.9、D【解析】由已知條件結(jié)合指數(shù)函數(shù)的性質(zhì)列不等式求解即可【詳解】因為指數(shù)函數(shù)在R上單調(diào)遞減,所以,得,所以實數(shù)a的取值范圍是,故選:D10、B【解析】由三角函數(shù)的定義可列方程解出,需注意的范圍【詳解】由三角函數(shù)定義,解得,由,知,則.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】本題首先可以根據(jù)得出,然后將其化簡為,最后帶入即可得出結(jié)果.【詳解】令向量與向量之間的夾角為,因為,所以,即,,,,因為,所以,故答案為:.【點睛】本題考查向量垂直的相關性質(zhì),若兩個向量垂直,則這兩個向量的數(shù)量積為,考查計算能力,考查化歸與轉(zhuǎn)化思想,是簡單題。12、【解析】先畫出函數(shù)的圖象,把方程有4個不同的實數(shù)根轉(zhuǎn)化為函數(shù)的圖象與有四個不同的交點,結(jié)合對數(shù)函數(shù)和二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),要先畫出函數(shù)的圖象,如圖所示,又由方程有4個不同的實數(shù)根,即函數(shù)的圖象與有四個不同的交點,可得,且,則=,因為,則,所以.故答案為.【點睛】本題主要考查了函數(shù)與方程的綜合應用,其中解答中把方程有4個不同的實數(shù)根,轉(zhuǎn)化為兩個函數(shù)的有四個交點,結(jié)合對數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)求解是解答的關鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于中檔試題.13、【解析】利用已知條件湊出,再根據(jù)“”的巧用,最后利用基本不等式即可求解.【詳解】由,得,即.因為所以,,則=,當且僅當即時,等號成立.所以當時,取得最小值為.故答案為:.14、(1)(2)【解析】(1)根據(jù),之間的關系,平方后求值即可;(2)利用誘導公式化簡后,再根據(jù)同角三角函數(shù)間關系求解.【小問1詳解】∵∴,.【小問2詳解】由,可得或(舍),原式,∴原式.15、【解析】由,利用正弦的和角公式求解即可【詳解】原式,故答案為:【點睛】本題考查正弦的和角公式的應用,考查三角函數(shù)的化簡問題16、②④【解析】當時,,終邊不在軸上,①錯誤;因為,所以圖象的一個對稱中心是,②正確;函數(shù)的單調(diào)性相對區(qū)間而言,不能說在象限內(nèi)單調(diào),③錯誤;函數(shù)的圖象向右平移個單位長度,得到的圖象,④正確.故填②④三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)43.5(萬元);(2)甲城市投資72萬元,乙城市投資48萬元.【解析】(1)直接代入收益公式進行計算即可.(2)由收益公式寫出f(x)=-x+3+26,令t=,將函數(shù)轉(zhuǎn)為關于t的二次函數(shù)求最值即可.【詳解】(1)當x=50時,此時甲城市投資50萬元,乙城市投資70萬元,所以公司的總收益為3-6+×70+2=43.5(萬元).(2)由題知,甲城市投資x萬元,乙城市投資(120-x)萬元,所以f(x)=3-6+(120-x)+2=-x+3+26,依題意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,則t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.當t=6,即x=72萬元時,y的最大值為44萬元,所以當甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元.【點睛】本題考查函數(shù)模型的應用,考查函數(shù)最值的求解,屬于基礎題.18、(1)(2)【解析】(1)根據(jù)輔角公式可得,由此即可求出的最小正周期;(2)根據(jù),可得,在結(jié)合正弦函數(shù)的性質(zhì),即可求出結(jié)果.【小問1詳解】解:所以最小正周期為;【小問2詳解】,,的值域為.19、(1)(2),【解析】(1)根據(jù)角的終邊經(jīng)過點求,再由題意得周期求即可;(2)根據(jù)正弦函數(shù)的單調(diào)性求單調(diào)區(qū)間即可.【小問1詳解】因為角的終邊經(jīng)過點,所以,若時,的最小值為可知,∴【小問2詳解】令,解得故單調(diào)遞增區(qū)間為:,20、(1)8;(2).【解析】(1)根據(jù)對數(shù)的運算法則即可求得;(2)根據(jù)同角三角函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論