版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆新疆生產(chǎn)建設(shè)兵團四校高二上數(shù)學(xué)期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”2.設(shè)是雙曲線的兩個焦點,是雙曲線上的一點,且,則的面積等于()A. B.C.24 D.483.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個數(shù)是()①曲線C關(guān)于點(0,0)對稱;②曲線C關(guān)于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.34.三等分角是“古希臘三大幾何問題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設(shè)雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.5.已知直線與直線垂直,則()A. B.C. D.36.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.7.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或8.如圖,在四面體中,,,,D為BC的中點,E為AD的中點,則可用向量,,表示為()A. B.C. D.9.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件10.橢圓與(0<k<9)的()A.長軸的長相等B.短軸的長相等C.離心率相等D.焦距相等11.已知拋物線,則其焦點到準(zhǔn)線的距離為()A. B.C.1 D.412.從裝有2個紅球和2個白球的口袋內(nèi)任取兩個球,則下列選項中的兩個事件為互斥事件的是()A.至多有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;都是紅球 D.至多有1個白球;至多有1個紅球二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左焦點為F,點P在雙曲線右支上,若線段PF的中點在以原點O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______14.已知點是拋物線上的兩點,,點是拋物線的焦點,若,則的值為__________15.已知O為坐標(biāo)原點,拋物線C:的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且,若,則______.16.已知點,點是直線上的動點,則的最小值是_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.(1)求橢圓的方程;(2)過點的直線交橢圓于,兩點,交直線于點,且,.求證:為定值,并計算出該定值.18.(12分)區(qū)塊鏈技術(shù)被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表年份20152016201720182019編號x12345企業(yè)總數(shù)量y(單位:千個)2.1563.7278.30524.27936.224注:參考數(shù)據(jù),,,(其中).附:樣本的最小二乘法估計公式為,(1)根據(jù)表中數(shù)據(jù)判斷,與(其中,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程;(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,若首場由甲乙比賽,則求甲公司獲得“優(yōu)勝公司”的概率.19.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.20.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點分別為,其離心率,且橢圓C經(jīng)過點.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點M作兩條不同的直線與橢圓C分別交于點A,B(均異于點M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.21.(12分)如圖,在正四棱柱中,,,點在棱上,且平面(1)求的值;(2)若,求二面角的余弦值22.(10分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點.(1)證明:平面;(2)求此幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.2、C【解析】雙曲線的實軸長為2,焦距為.根據(jù)題意和雙曲線的定義知,所以,,所以,所以.所以.故選:C【點睛】本題主要考查了焦點三角形以及橢圓的定義運用,屬于基礎(chǔ)題型.3、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關(guān)于原點對稱;②將點(y,x)代入后依然為,故曲線C關(guān)于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠的點的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.4、C【解析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點為,則由.所以,即圓的半徑為2故選:C5、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.6、B【解析】設(shè)平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設(shè)平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.7、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當(dāng)已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時,分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當(dāng)直線在直線位置時,直線與曲線剛好有兩個交點,此時,當(dāng)直線在直線位置時,直線與曲線只有一個公共點,此時,則當(dāng)時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D8、B【解析】利用空間向量的基本定理,用,,表示向量【詳解】因為是的中點,是的中點,,故選:B9、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.10、D【解析】根據(jù)橢圓方程求得兩個橢圓的,由此確定正確選項.【詳解】橢圓與(0<k<9)的焦點分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D11、B【解析】化簡拋物線的方程為,求得,即為焦點到準(zhǔn)線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準(zhǔn)線的距離是故選:B12、C【解析】根據(jù)試驗過程進行分析,利用互斥事件的定義對四個選項一一判斷即可.【詳解】對于A:“至多有1個白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個白球”與“都是紅球”不是互斥事件.故A錯誤;對于B:“至少有1個白球”包含都是白球和一紅一白,“至少有1個紅球”包含都是紅球和一紅一白,所以“至少有1個白球”與“至少有1個紅球”不是互斥事件.故B錯誤;對于C:“恰好有1個白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個白球”與“都是紅球”是互斥事件.故C錯誤;對于D:“至多有1個紅球”包含都是白球和一紅一白,“至多有1個白球”包含都是紅球和一紅一白,所以“至多有1個白球”與“至多有1個紅球”不是互斥事件.故D錯誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設(shè)雙曲線的右焦點為,線段PF的中點為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.14、10【解析】由拋物線的定義根據(jù)題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據(jù)題設(shè)可得,則(舍去負值),故,故填.【點睛】本題考查拋物線的定義和性質(zhì),利用已知相等關(guān)系求解拋物線方程,然后求解已知點的縱坐標(biāo),解題中需要熟練拋物的定義和性質(zhì),靈活應(yīng)用.15、3【解析】先求點坐標(biāo),再由已知得Q點坐標(biāo),由列方程得解.【詳解】拋物線:()的焦點,∵P為上一點,與軸垂直,所以P的橫坐標(biāo)為,代入拋物線方程求得P的縱坐標(biāo)為,不妨設(shè),因為Q為軸上一點,且,所以Q在F的右側(cè),又,,,因為,所以,,所以3故答案為:3.16、【解析】直接根據(jù)點到直線的距離公式即可求出【詳解】線段最短時,與直線垂直,所以,的最小值即為點到直線的距離,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定值為【解析】(1)由題意得,從而寫出橢圓的方程即可;(2)易知直線斜率存在,令,,,,,將直線的方程代入橢圓的方程,消去得到關(guān)于的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量的坐標(biāo)公式即可求得值,從而解決問題.【小問1詳解】(1)由條件得,所以方程為【小問2詳解】易知直線斜率存在,令,,,由,因為,所以,即-1-x1因為,所以,即-4-x1由①,由②將,代入上式,得18、(1)(2)(3)【解析】(1)根據(jù)表中數(shù)據(jù)判斷y關(guān)于x的回歸方程為非線性方程;(2)令,將y關(guān)于x的非線性關(guān)系,轉(zhuǎn)化為z關(guān)于x的線性關(guān)系,利用最小二乘法求解;(3)利用相互獨立事件的概率相乘求求解;【小問1詳解】根據(jù)表中數(shù)據(jù)適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量.【小問2詳解】,,令,則,,由公式計算可知,即,即所以y關(guān)于x的回歸方程為【小問3詳解】設(shè)甲公司獲得“優(yōu)勝公司”為事件.則所以甲公司獲得“優(yōu)勝公司”的概率為.19、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個法向量,計算即可求解;(2)假設(shè)線段上存在點符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點,使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.20、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點的坐標(biāo),再通過斜率公式計算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點,則②,由①②解得a=6,b=2,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛州市國家區(qū)域醫(yī)療中心及緊密型城市醫(yī)療集團成員單位2026年公開招聘高層次衛(wèi)生專業(yè)人才(廣州站)筆試備考題庫必考題
- 陜西2026選調(diào)生公布網(wǎng)站考試備考題庫附答案
- 美國平面設(shè)計職業(yè)方向
- 專項整治話術(shù):專項整治行動溝通話術(shù)
- 2026重慶農(nóng)商銀行校招試題及答案
- 2026河北廊坊市中級人民法院招聘勞務(wù)派遣人員2名備考題庫必考題
- 2026內(nèi)蒙古錫林郭勒盟深能北方能源控股有限公司招聘參考題庫必考題
- 2026廣西南寧市人民公園招聘編外聘用人員1人參考題庫附答案
- 2025浙江寧波象山交通開發(fā)建設(shè)集團有限公司第三期招聘工作人員考察對象公布備考題庫附答案
- 統(tǒng)計專業(yè)資格考試初級模擬試卷一
- 湖南省婁底市期末真題重組卷-2025-2026學(xué)年四年級語文上冊(統(tǒng)編版)
- 2025年華僑生聯(lián)考試題試卷及答案
- 土石方測量施工方案
- DB11∕T 2490-2025 文物保護單位無障礙設(shè)施設(shè)置規(guī)范
- 2025年司法協(xié)理員年度考核表
- 風(fēng)電項目質(zhì)量管理
- 靜脈輸液操作規(guī)范與并發(fā)癥預(yù)防指南
- 福建省福州市福清市2024-2025學(xué)年二年級上學(xué)期期末考試語文試卷
- 2025年CAR-NK細胞治療臨床前數(shù)據(jù)
- 班團活動設(shè)計
- 基金通道業(yè)務(wù)合同協(xié)議
評論
0/150
提交評論