2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江西省贛州市會昌縣高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若復(fù)數(shù)滿足,則復(fù)數(shù)對應(yīng)的點(diǎn)的軌跡圍成圖形的面積等于()A. B.C. D.3.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.4.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)5.已知橢圓的兩焦點(diǎn)分別為,,P為橢圓上一點(diǎn),且,則的面積等于()A.6 B.C. D.6.已知的展開式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,則()A.4 B.5C.6 D.77.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B.C. D.8.已知是函數(shù)的導(dǎo)函數(shù),則()A. B.C. D.9.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.10.已知,,,,則下列不等關(guān)系正確的是()A. B.C. D.11.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,則該數(shù)列的第8項(xiàng)為()A.51 B.68C.106 D.15712.曲線在點(diǎn)處的切線過點(diǎn),則實(shí)數(shù)()A. B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是定義在上的可導(dǎo)函數(shù),且滿足,則不等式解集為_______14.若橢圓的長軸是短軸的2倍,且經(jīng)過點(diǎn),則橢圓的離心率為________.15.如果圓錐的底面圓半徑為1,母線長為2,則該圓錐的側(cè)面積為___16.已知數(shù)列滿足,將數(shù)列按如下方式排列成新數(shù)列:,,,,,,,,,…,,….則新數(shù)列的前70項(xiàng)和為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,且|F1F2|=,橢圓的長半軸長與雙曲線半實(shí)軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點(diǎn),求△F1PF2的面積18.(12分)已知曲線上任意一點(diǎn)滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側(cè)的交點(diǎn)分別是,且,求的最小值.19.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:其中一個數(shù)字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學(xué)習(xí)成語知識時間(小時)2.5344.5由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學(xué)習(xí)成語知識時間.參考公式:,.20.(12分)已知等比數(shù)列的首項(xiàng),公比,在中每相鄰兩項(xiàng)之間都插入3個正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個新的等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前n項(xiàng)的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.21.(12分)在△中,已知、、分別是三內(nèi)角、、所對應(yīng)的邊長,且(Ⅰ)求角的大??;(Ⅱ)若,且△的面積為,求.22.(10分)已知圓:與x軸負(fù)半軸交于點(diǎn)A,過A的直線交拋物線于B,C兩點(diǎn),且.(1)證明:點(diǎn)C的橫坐標(biāo)為定值;(2)若點(diǎn)C在圓內(nèi),且過點(diǎn)C與垂直的直線與圓交于D,E兩點(diǎn),求四邊形ADBE的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點(diǎn)睛】本題考查直線一般式中直線與直線垂直的系數(shù)關(guān)系,考查充分性和必要性的判斷,是基礎(chǔ)題.2、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對應(yīng)的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D3、D【解析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D4、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D5、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點(diǎn),∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B6、C【解析】利用賦值法確定展開式中各項(xiàng)系數(shù)的和以及二項(xiàng)式系數(shù)的和,利用比值為,列出關(guān)于的方程,解方程.【詳解】二項(xiàng)式的各項(xiàng)系數(shù)的和為,二項(xiàng)式的各項(xiàng)二項(xiàng)式系數(shù)的和為,因?yàn)楦黜?xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,所以,.故選:C.7、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.8、B【解析】求出,代值計算可得的值.【詳解】因?yàn)?,則,因此,.故選:B.9、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點(diǎn)處的切線斜率隨增大而減小,滿足要求的只有A故選:A10、C【解析】不等式性質(zhì)相關(guān)的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負(fù)數(shù),因?yàn)椋瑒t,故A錯.若、,則,故B錯.由不等式的性質(zhì)可知,因?yàn)?,所以,故C對.若,因?yàn)?,所以,故D錯.故選:C.11、C【解析】對高階等差數(shù)列按其定義逐一進(jìn)行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進(jìn)行求解.【詳解】現(xiàn)有一個高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,各項(xiàng)與前一項(xiàng)之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C12、A【解析】由導(dǎo)數(shù)的幾何意義得切線方程為,進(jìn)而得.【詳解】解:因?yàn)椋?,,所以,切線方程為,因?yàn)榍芯€過點(diǎn),所以,解得故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造函數(shù),結(jié)合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數(shù)在上單調(diào)遞增,不等式可化為,則,解得:【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】分類討論焦點(diǎn)在軸與焦點(diǎn)在軸兩種情況.【詳解】因?yàn)闄E圓經(jīng)過點(diǎn),當(dāng)焦點(diǎn)在軸時,可知,,所以,所以,當(dāng)焦點(diǎn)在軸時,同理可得.故答案為:15、2π【解析】由圓錐的側(cè)面積公式即可求解【詳解】由題意,圓錐底面周長為2π×1=2π,又母線長為2,所以圓錐的側(cè)面積故答案為:2π.16、##2.9375【解析】先根據(jù)題干條件得到,再利用錯位相減法求前64項(xiàng)和,最后求出前70項(xiàng)和.【詳解】①,當(dāng)時,;當(dāng)時,②,①-②得:,即又滿足,所以由,得令,則,兩式相減得,則所以新數(shù)列的前70項(xiàng)和為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設(shè)橢圓長半軸為a,由離心率之比求出a,進(jìn)而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標(biāo)準(zhǔn)方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進(jìn)一步求得sin∠的值,代入面積公式得答案試題解析:(1)設(shè)橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設(shè)F1,F(xiàn)2分別為左、右焦點(diǎn),P是第一象限的一個交點(diǎn),則PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=PF1·PF2sin∠F1PF2=·10·4·=12考點(diǎn):橢圓雙曲線方程及性質(zhì)18、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設(shè)直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結(jié)合基本不等式即可得出答案.【小問1詳解】解:設(shè),則,等價于,曲線為以為焦點(diǎn)的雙曲線,且實(shí)軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設(shè)直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,取得最小值8.19、(1);(2)詳見解析.【解析】(1)先根據(jù)兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進(jìn)行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進(jìn)行預(yù)測.試題解析:(1)設(shè)被污損的數(shù)字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結(jié)果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表中數(shù)據(jù)得,,∴,線性回歸方程.可預(yù)測年齡為55觀眾周均學(xué)習(xí)成語知識時間為4.9小時.20、(1)(2)當(dāng)或時,有最大值.【解析】(1)利用等比數(shù)列通項(xiàng)公式求解即可;(2)求出數(shù)列的前n項(xiàng)的乘積為,利用二次函數(shù)的性質(zhì)求最值即可.【小問1詳解】由已知得,數(shù)列首項(xiàng),,設(shè)數(shù)列的公比為,即∴即,【小問2詳解】,即當(dāng)或5時,有最大值.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到關(guān)于角A的關(guān)系式,求解A(II)再結(jié)合正弦面積公式得到三角形的邊長的求解【詳解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得22、(1)證明見解析(2)【解析】(1)設(shè)直線方程,與拋物線方程聯(lián)立,設(shè),,結(jié)合,得到,結(jié)合根與系數(shù)的關(guān)系,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論