版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中山市中考數(shù)學(xué)易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(含答案)(2)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,在中,、分別是、的中點(diǎn).已知,,,則的長(zhǎng)為()A. B. C. D.2.若直角三角形的三邊長(zhǎng)分別為、a、,且a、b都是正整數(shù),則三角形其中一邊的長(zhǎng)可能為()A.22 B.32 C.62 D.823.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,交AC于點(diǎn)D,若CD=1,則AB的長(zhǎng)是()A.2 B. C. D.44.如圖,□ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,∠AEB=45°,BD=2,將△ABC沿AC所在直線翻折180°到其原來(lái)所在的同一平面內(nèi),若點(diǎn)B的落點(diǎn)記為B′,則DB′的長(zhǎng)為()A.1 B. C. D.5.如果直角三角形的三條邊為3、4、a,則a的取值可以有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)6.如圖,在中,,,,與的平分線交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),若則的長(zhǎng)為()A. B.2 C. D.47.如圖鋼架中,∠A=15°,現(xiàn)焊上與AP1等長(zhǎng)的鋼條P1P2,P2P3…來(lái)加固鋼架,若最后一根鋼條與射線AB的焊接點(diǎn)P到A點(diǎn)的距離為4+2,則所有鋼條的總長(zhǎng)為()A.16 B.15 C.12 D.108.如圖,在△ABC中,∠BAC=90°,AC=2AB,點(diǎn)D是AC的中點(diǎn),將一塊銳角為45°的直角三角板ADE如圖放置,連接BE,EC.下列判斷:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=DE.其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為()A.42 B.32 C.42或32 D.37或3310.如圖,在矩形ABCD中,AB=3,BC=4,在矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S△PAB=3S△PCD,則動(dòng)點(diǎn)P到點(diǎn)A,B兩點(diǎn)距離之和PA+PB的最小值為()A.5 B. C. D.11.△ABC的三邊分別為,下列條件能推出△ABC是直角三角形的有()①;②;③∠A=∠B∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤;⑥A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)12.如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF與AD的延長(zhǎng)線相交于點(diǎn)G,下面給出四個(gè)結(jié)論:①;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正確的結(jié)論是()A.①②③ B.①②④ C.②③④ D.①②③④13.如圖,在四邊形ABCD中,,與的平分線相交于BC邊上的M點(diǎn),則下列結(jié)論:①;②;③;④到AD的距離等于BC的;⑤為BC的中點(diǎn);其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)14.如圖,A、B兩點(diǎn)在直線l的兩側(cè),點(diǎn)A到直線l的距離AC=4,點(diǎn)B到直線l的距離BD=2,且CD=6,P為直線CD上的動(dòng)點(diǎn),則的最大值是()A. B. C. D.615.我國(guó)古代數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的三角形,如圖所示,已知∠A=90°,BD=4,CF=6,設(shè)正方形ADOF的邊長(zhǎng)為,則()A.12 B.16 C.20 D.2416.以線段、b、c的長(zhǎng)為邊長(zhǎng)能構(gòu)成直角三角形的是()A.=3,b=4,c=6 B.=1,b=,c=C.=5,b=6,c=8 D.=,b=2,c=17.如圖,點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別是4和2,分別以點(diǎn)和點(diǎn)為圓心,線段的長(zhǎng)度為半徑畫(huà)弧,在數(shù)軸的上方交于點(diǎn).再以原點(diǎn)為圓心,為半徑畫(huà)弧,與數(shù)軸的正半軸交于點(diǎn),則點(diǎn)對(duì)應(yīng)的數(shù)為()A.3.5 B. C. D.18.為了慶祝國(guó)慶,八年級(jí)(1)班的同學(xué)做了許多拉花裝飾教室,小玲抬來(lái)一架2.5米長(zhǎng)的梯子,準(zhǔn)備將梯子架到2.4米高的墻上,則梯腳與墻角的距離是()A.0.6米 B.0.7米 C.0.8米 D.0.9米19.在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形D.如果a2=b2﹣c2,那么△ABC是直角三角形且∠A=90°20.如圖,正方體的棱長(zhǎng)為4cm,A是正方體的一個(gè)頂點(diǎn),B是側(cè)面正方形對(duì)角線的交點(diǎn).一只螞蟻在正方體的表面上爬行,從點(diǎn)A爬到點(diǎn)B的最短路徑是()A.9 B. C. D.1221.已知M、N是線段AB上的兩點(diǎn),AM=MN=2,NB=1,以點(diǎn)A為圓心,AN長(zhǎng)為半徑畫(huà)??;再以點(diǎn)B為圓心,BM長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,連接AC,BC,則△ABC一定是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形22.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計(jì))的高為,在容器內(nèi)壁離容器底部的點(diǎn)處有一滴蜂蜜,此時(shí)一只螞蟻正好在容器外壁,位于離容器上沿的點(diǎn)處,若螞蟻吃到蜂蜜需爬行的最短路徑為,則該圓柱底面周長(zhǎng)為()A. B. C. D.23.如圖,在△ABC中,AB=8,BC=10,AC=6,則BC邊上的高AD為()A.8 B.9 C. D.1024.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4825.我國(guó)古代數(shù)學(xué)家趙爽“的勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么的值為().A.49 B.25 C.13 D.126.如圖所示,有一個(gè)高18cm,底面周長(zhǎng)為24cm的圓柱形玻璃容器,在外側(cè)距下底1cm的點(diǎn)S處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距開(kāi)口處1cm的點(diǎn)F處有一只蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路徑的長(zhǎng)度是()A.16cm B.18cm C.20cm D.24cm27.若△ABC中,AB=AC=,BC=4,則△ABC的面積為()A.4 B.8 C.16 D.28.在中,邊上的中線,則的面積為()A.6 B.7 C.8 D.929.下列各組數(shù)據(jù),是三角形的三邊長(zhǎng)能構(gòu)成直角三角形的是()A. B. C. D.30.A、B、C分別表示三個(gè)村莊,米,米,米,某社區(qū)擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在()A.AB的中點(diǎn) B.BC的中點(diǎn)C.AC的中點(diǎn) D.的平分線與AB的交點(diǎn)【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.C解析:C【分析】設(shè)EC=x,DC=y,則直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,由方程組可求得x2+y2,在直角△ABC中,【詳解】解:設(shè)EC=x,DC=y,∠ACB=90°,∵、分別是、的中點(diǎn),∴AC=2EC=2x,BC=2DC=2y,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,∴,即,在直角△ABC中,.故選:C.【點(diǎn)睛】本題考查了勾股定理的靈活運(yùn)用,考查了中點(diǎn)的定義,本題中根據(jù)直角△BCE和直角△ADC求得的值是解題的關(guān)鍵.2.B解析:B【解析】由題可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當(dāng)b=8時(shí),4b=32,故選B.3.B解析:B【分析】根據(jù)30°直角三角形的性質(zhì),求出∠ABC的度數(shù),然后根據(jù)角平分線的性質(zhì)求出∠CBD=30°,再根據(jù)30°角所對(duì)的直角三角形性質(zhì),30°角所對(duì)的直角邊等于斜邊的一半,求解即可.【詳解】如圖∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,∵CD=1,∠CDB=30°∴BD=2根據(jù)勾股定理可得BC=∵∠A=30°∴AB=2故選B.【點(diǎn)睛】此題主要考查了30°角直角三角形的性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)題意畫(huà)出圖形,再利用30°角所對(duì)直角邊等于斜邊的一半求解.4.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質(zhì)知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質(zhì)知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點(diǎn)睛】考查了平行四邊形的性質(zhì)以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認(rèn)a是直角邊還是斜邊.【詳解】解:當(dāng)a是直角三角形的斜邊時(shí),;當(dāng)a為直角三角形的直角邊時(shí),.故選C.【點(diǎn)睛】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解答此題的關(guān)鍵.6.B解析:B【分析】過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長(zhǎng),易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.【詳解】解:過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,∵BO,CO分別為∠ABC,∠ACB的平分線,所以O(shè)D=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點(diǎn)睛】此題考查了角平分線的定義與性質(zhì),以及全等三角形的判定與性質(zhì),屬于中考??碱}型.7.D解析:D【分析】根據(jù)已知利用等腰三角形的性質(zhì)及三角形外角的性質(zhì),找出圖中存在的規(guī)律,求出鋼條的根數(shù),然后根據(jù)最后一根鋼條與射線AB的焊接點(diǎn)P到A點(diǎn)的距離即AP5為4+2,設(shè)AP1=a,作P2D⊥AB于點(diǎn)D,再用含a的式子表示出P1P3,P3P5,從而可求出a的值,即得出每根鋼條的長(zhǎng)度,從而可以求得所有鋼條的總長(zhǎng).【詳解】解:如圖,∵AP1與各鋼條的長(zhǎng)度相等,∴∠A=∠P1P2A=15°,∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,此時(shí)就不能再往上焊接了,綜上所述總共可焊上5根鋼條.設(shè)AP1=a,作P2D⊥AB于點(diǎn)D,∵∠P2P1D=30°,∴P2D=P1P2,∴P1D=a,∵P1P2=P2P3,∴P1P3=2P1D=a,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等邊三角形,∴P3P5=a,∵最后一根鋼條與射線AB的焊接點(diǎn)P到A點(diǎn)的距離為4+2,∴AP5=a+a+a=4+2,解得,a=2,∴所有鋼條的總長(zhǎng)為2×5=10,故選:D.【點(diǎn)睛】本題考查了三角形的內(nèi)角和、等腰三角形的性質(zhì)、三角形外角的性質(zhì)、等邊三角形的判定與性質(zhì)以及勾股定理等知識(shí),發(fā)現(xiàn)并利用規(guī)律找出鋼條的根數(shù)是解答本題的關(guān)鍵.8.C解析:C【分析】根據(jù)AC=2AB,點(diǎn)D是AC的中點(diǎn)求出AB=CD,再根據(jù)△ADE是等腰直角三角形求出AE=DE,并求出∠BAE=∠CDE=135°,然后利用“邊角邊”證明△ABE和△DCE全等,從而判斷出①小題正確;根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=EC,從而判斷出②小題正確;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠AEB=∠DEC,然后推出∠BEC=∠AED,從而判斷出③小題正確;根據(jù)等腰直角三角形斜邊等于直角邊的倍,用DE表示出AD,然后得到AB、AC,再根據(jù)勾股定理用DE與EC表示出BC,整理即可得解,從而判斷出④小題錯(cuò)誤.【詳解】解:∵AC=2AB,點(diǎn)D是AC的中點(diǎn),∴CD=AC=AB,∵△ADE是等腰直角三角形,∴AE=DE,∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,∴∠BAE=∠CDE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),故①小題正確;∴BE=EC,∠AEB=∠DEC,故②小題正確;∵∠AEB+∠BED=90°,∴∠DEC+∠BED=90°,∴BE⊥EC,故③小題正確;∵△ADE是等腰直角三角形,∴AD=DE,∵AC=2AB,點(diǎn)D是AC的中點(diǎn),∴AB=DE,AC=2DE,在Rt△ABC中,BC2=AB2+AC2=(DE)2+(2DE)2=10DE2,∵BE=EC,BE⊥EC,∴BC2=BE2+EC2=2EC2,∴2EC2=10DE2,解得EC=DE,故④小題錯(cuò)誤,綜上所述,判斷正確的有①②③共3個(gè).故選:C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),準(zhǔn)確識(shí)圖,根據(jù)△ADE是等腰直角三角形推出AE=DE,∠BAE=∠CDE=135°是解題的關(guān)鍵,也是解決本題的突破口.9.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時(shí),高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長(zhǎng)為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長(zhǎng)為:15+13+4=32故選:C【點(diǎn)睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當(dāng)幾何題型題干未提供圖形時(shí),往往存在多解情況.10.B解析:B【分析】首先由,得知?jiǎng)狱c(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)E,連接AE、BE,則BE的長(zhǎng)就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵,設(shè)點(diǎn)P到CD的距離為h,則點(diǎn)P到AB的距離為(4-h),則,解得:h=1,∴點(diǎn)P到CD的距離1,到AB的距離為3,∴如下圖所示,動(dòng)點(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)E,連接AE、BE,且兩點(diǎn)之間線段最短,∴PA+PB的最小值即為BE的長(zhǎng)度,AE=6,AB=3,∠BAE=90°,根據(jù)勾股定理:,故選:B.【點(diǎn)睛】本題考查了軸對(duì)稱—最短路線問(wèn)題(兩點(diǎn)之間線段最短),勾股定理,得出動(dòng)點(diǎn)P所在的位置是解題的關(guān)鍵.11.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對(duì)每個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯(cuò)誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個(gè);故選擇:D.【點(diǎn)睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進(jìn)行判斷三角形是直角三角形.12.A解析:A【分析】先判斷△DBE是等腰直角三角形,根據(jù)勾股定理可推導(dǎo)得出BD=BE,故①正確;根據(jù)∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正確;證明△BEH≌△DEC,從而可得BH=CD,再由AB=CD,可得③正確;利用已知條件不能得到④,據(jù)此即可得到選項(xiàng).【詳解】解:∵∠DBC=45°,DE⊥BC于E,∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,∴BD=BE,故①正確;∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,∴∠BHE=∠C,又∵在?ABCD中,∠A=∠C,∴∠A=∠BHE,故②正確;在△BEH和△DEC中,,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,故③正確;利用已知條件不能得到△BCF≌△DCE,故④錯(cuò)誤,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.13.C解析:C【分析】過(guò)作于,得出,,求出,根據(jù)三角形內(nèi)角和定理求出,即可判斷①;根據(jù)角平分線性質(zhì)求出,,即可判斷④和⑤;由勾股定理求出,,即可判斷③;根據(jù)證,推出,同理得出,即可判斷②.【詳解】解:過(guò)作于,與的平分線相交于邊上的點(diǎn),,,,,,,故①正確;平分,,,,同理,,故⑤正確;到的距離等于的一半,故④錯(cuò)誤;由勾股定理得:,,又,,,同理,,故③正確;在和中,,同理,,故②正確;故選:.【點(diǎn)睛】本題考查了角平分線性質(zhì),垂直定義,直角梯形,勾股定理,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.14.C解析:C【解析】試題解析:作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接并延長(zhǎng),與直線的交點(diǎn)即為使得取最大值時(shí)對(duì)應(yīng)的點(diǎn)此時(shí)過(guò)點(diǎn)作于點(diǎn)如圖,四邊形為矩形,的最大值為:故答案為:15.D解析:D【分析】設(shè)正方形ADOF的邊長(zhǎng)為x,在直角三角形ACB中,利用勾股定理可建立關(guān)于x的方程,整理方程即可.【詳解】解:設(shè)正方形ADOF的邊長(zhǎng)為x,由題意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的性質(zhì)、勾股定理等知識(shí);熟練掌握正方形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.16.B解析:B【分析】根據(jù)勾股定理的逆定理對(duì)四個(gè)選項(xiàng)進(jìn)行逐一分析即可.【詳解】A、,C、,D、,故錯(cuò)誤;B、,能構(gòu)成直角三角形,本選項(xiàng)正確.故選B.【點(diǎn)睛】本題考查了勾股定理的知識(shí)點(diǎn),解題的關(guān)鍵是熟練的掌握勾股定理的定理與運(yùn)算.17.B解析:B【分析】如圖,作CD⊥AB于點(diǎn)D,由題意可得△ABC是等邊三角形,從而可得BD、OD的長(zhǎng),然后根據(jù)勾股定理即可求出CD與OC的長(zhǎng),進(jìn)而可得OM的長(zhǎng),于是可得答案.【詳解】解:∵點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別是4和2,∴OB=2,OA=4,如圖,作CD⊥AB于點(diǎn)D,則由題意得:CA=CB=AB=2,∴△ABC是等邊三角形,∴BD=AD=,∴OD=OB+BD=3,,∴,∴OM=OC=,∴點(diǎn)對(duì)應(yīng)的數(shù)為.故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸、等邊三角形的判定與性質(zhì)以及勾股定理等知識(shí),屬于常見(jiàn)題型,正確理解題意、熟練掌握上述知識(shí)是解題的關(guān)鍵.18.B解析:B【解析】試題解析:依題意得:梯子、地面、墻剛好形成一直角三角形,梯高為斜邊,利用勾股定理得:梯腳與墻角距離:=0.7(米).故選B.19.D解析:D【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】選項(xiàng)A中如果∠A﹣∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,選項(xiàng)正確;選項(xiàng)B中如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,選項(xiàng)正確;選項(xiàng)C中如果a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC是直角三角形,選項(xiàng)正確;選項(xiàng)D中如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,選項(xiàng)錯(cuò)誤;故選D.【點(diǎn)睛】考查直角三角形的判定,學(xué)生熟練掌握勾股定理逆定理是本題解題的關(guān)鍵,并結(jié)合直角三角形的定義解出此題.20.B解析:B【分析】將正方體的左側(cè)面與前面展開(kāi),構(gòu)成一個(gè)長(zhǎng)方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點(diǎn)睛】此題求最短路徑,我們將平面展開(kāi),組成一個(gè)直角三角形,利用勾股定理求出斜邊就可以了.21.B解析:B【分析】依據(jù)作圖即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,進(jìn)而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【詳解】如圖所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故選B.【點(diǎn)睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.22.D解析:D【分析】將容器側(cè)面展開(kāi),建立A關(guān)于EG的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.【詳解】解:如圖:將圓柱展開(kāi),EG為上底面圓周長(zhǎng)的一半,作A關(guān)于E的對(duì)稱點(diǎn)A',連接A'B交EG于F,則螞蟻吃到蜂蜜需爬行的最短路徑為AF+BF的長(zhǎng),即AF+BF=A'B=20cm,延長(zhǎng)BG,過(guò)A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=∴則該圓柱底面周長(zhǎng)為24cm.故選:D.【點(diǎn)睛】本題考查了平面展開(kāi)---最短路徑問(wèn)題,將圖形展開(kāi),利用軸對(duì)稱的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力.23.C解析:C【分析】本題根據(jù)所給的條件得知,△ABC是直角三角形,再根據(jù)三角形的面積相等即可求出BC邊上的高.【詳解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,則由面積公式可知,S△ABC=ABAC=BCAD,∴AD=.故選C.【點(diǎn)睛】本題考查了勾股定理的逆定理,需要先證得三角形為直角三角形,再利用三角形的面積公式求得AD的值.24.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.25.A解析:A【分析】根據(jù)正方形的面積公式以及勾股定理,結(jié)合圖形進(jìn)行分析發(fā)現(xiàn):大正方形的面積即直角三角形斜邊的平方25,也就是兩條直角邊的平方和是25,四個(gè)直角三角形的面積和是大正方形的面積減去小正方形的面積即2ab=12,據(jù)此即可得結(jié)果.【詳解】根據(jù)題意,結(jié)合勾股定理a2+b2=25,四個(gè)三角形的面積=4×ab=25-1=24,∴2ab=24,聯(lián)立解得:(a+b)2=25+24=49.故選A.26.C解析:C【分析】首先畫(huà)出圓柱的側(cè)面展開(kāi)圖,進(jìn)而得到SC=12cm,F(xiàn)C=18-2=16cm,再利用勾股定理計(jì)算出SF長(zhǎng)即可.【詳解】將圓柱的側(cè)面展開(kāi),蜘蛛到達(dá)目的地的最近距離為線段SF的長(zhǎng),由勾股定理,SF2=SC2+FC
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電影院服務(wù)質(zhì)量監(jiān)控與考核制度
- 超市員工保密制度
- 采購(gòu)業(yè)務(wù)風(fēng)險(xiǎn)識(shí)別與應(yīng)對(duì)制度
- 辦公室員工培訓(xùn)效果跟蹤總結(jié)制度
- 辦公室員工加班與休息時(shí)間制度
- 養(yǎng)老院老人健康監(jiān)測(cè)人員表彰制度
- 2026年深圳大學(xué)附屬光明學(xué)校招聘教輔人員備考題庫(kù)及1套完整答案詳解
- 養(yǎng)老院定期體檢制度
- 四川大學(xué)華西廈門(mén)醫(yī)院2026年應(yīng)屆畢業(yè)生招錄備考題庫(kù)及1套參考答案詳解
- 2026年機(jī)械工業(yè)北京電工技術(shù)經(jīng)濟(jì)研究所招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- DB6301∕T 4-2023 住宅物業(yè)星級(jí)服務(wù)規(guī)范
- 護(hù)理查房與病例討論區(qū)別
- 公司特殊貢獻(xiàn)獎(jiǎng)管理制度
- T/CA 105-2019手機(jī)殼套通用規(guī)范
- 2025-2031年中國(guó)汽車維修設(shè)備行業(yè)市場(chǎng)全景評(píng)估及產(chǎn)業(yè)前景研判報(bào)告
- 門(mén)窗拆除合同協(xié)議書(shū)范本
- GB/T 1040.1-2025塑料拉伸性能的測(cè)定第1部分:總則
- 重癥胰腺炎的中醫(yī)護(hù)理
- SL631水利水電工程單元工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)第3部分:地基處理與基礎(chǔ)工程
- 2024年高中語(yǔ)文選擇性必修上冊(cè)古詩(shī)文情境式默寫(xiě)(含答案)
- 中央2025年全國(guó)婦聯(lián)所屬在京事業(yè)單位招聘93人筆試歷年參考題庫(kù)附帶答案詳解-1
評(píng)論
0/150
提交評(píng)論