山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濱州行知中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.2.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權(quán)重最大的是居住B.CPI一籃子商品中吃穿住所占權(quán)重超過50%C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%3.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為()A. B. C. D.4.若為純虛數(shù),則z=()A. B.6i C. D.205.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.6.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.27.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等8.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.9.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于10.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.211.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或12.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線過圓的圓心,則的最小值是_____.14.高三(1)班共有56人,學(xué)號依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為.15.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數(shù)λ的值是__.16.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.18.(12分)在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù),α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C有唯一的公共點,求角α的大?。?9.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.20.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.21.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.2、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.3、C【解析】

據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.4、C【解析】

根據(jù)復(fù)數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運算,屬基礎(chǔ)題.5、B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設(shè)直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.6、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.7、B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、D【解析】

建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標(biāo)系中,點,是第一象限內(nèi)的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.9、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.10、B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.11、B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點與原點間的距離.①當(dāng)時,,∴,∴.②當(dāng)時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標(biāo)x,縱坐標(biāo)y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.12、D【解析】

先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當(dāng)時,,故在區(qū)間上單調(diào)遞減;當(dāng)時,,故在區(qū)間上單調(diào)遞增;當(dāng)時,令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時,趨近于正無窮;對函數(shù),當(dāng)時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.14、20【解析】

根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號為第一組,15至28號為第二組,29號至42號為第三組,43號至56號為第四組.而學(xué)號6,34,48分別是第一、三、四組的學(xué)號,所以還有一個同學(xué)應(yīng)該是15+6-1=20號,故答案為20.15、【解析】

根據(jù)平面向量的數(shù)量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點睛】本題考查了單位向量和平面向量數(shù)量積的運算問題,是中檔題.16、【解析】

作出準(zhǔn)線,過作準(zhǔn)線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設(shè)是準(zhǔn)線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關(guān)鍵是利用拋物線的定義,把拋物線上點到焦點距離轉(zhuǎn)化為該點到準(zhǔn)線的距離,用平面幾何方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),理由見解析.【解析】

(1)求出橢圓的上、下焦點坐標(biāo),利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設(shè)點的坐標(biāo)為,求出直線的方程,求出點的坐標(biāo),由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點的坐標(biāo)為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點,直線的斜率為,直線的斜率為,所以,,,因此,.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中定值問題的求解,考查計算能力,屬于中等題.18、(1)當(dāng)時,直線l方程為x=-1;當(dāng)時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】

(1)對直線l的傾斜角分類討論,消去參數(shù)即可求出其普通方程;由,即可求出曲線C的直角坐標(biāo)方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,根據(jù)條件Δ=0,即可求解.【詳解】(1)當(dāng)時,直線l的普通方程為x=-1;當(dāng)時,消去參數(shù)得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.【點睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)方程化直角坐標(biāo)方程,考查直線與曲線的關(guān)系,屬于中檔題.19、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時,直線的斜率為0,此時(ii)當(dāng)直線的斜率為零時,.(iii)當(dāng)直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論