山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題含解析_第1頁
山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題含解析_第2頁
山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題含解析_第3頁
山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題含解析_第4頁
山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省泰安市長城中學2026屆數(shù)學高二上期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的導函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.2.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.3.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.4.已知函數(shù)的值域為,則實數(shù)的取值范圍是()A. B.C. D.5.若,,且,則()A. B.C. D.6.已知函數(shù),.若存在三個零點,則實數(shù)的取值范圍是()A. B.C. D.7.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.8.已知點到直線:的距離為1,則等于()A. B.C. D.9.圓與的公共弦長為()A. B.C. D.10.設(shè)為雙曲線與橢圓的公共的左右焦點,它們在第一象限內(nèi)交于點是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.11.直線經(jīng)過兩點,那么其斜率為()A. B.C. D.12.某班對期中成績進行分析,利用隨機數(shù)表法抽取樣本時,先將60個同學的成績按01,02,03,……,60進行編號,然后從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.52二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、為正數(shù),若,則的最小值是______,此時______.14.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.15.若橢圓:的長軸長為4,焦距為2,則橢圓的標準方程為______.16.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.18.(12分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標系中要標出關(guān)鍵點);(3)求出方程的解的個數(shù).19.(12分)在平面直角坐標系xOy中,已知橢圓C:的焦距為4,且過點.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心(高的交點),若存在,求出直線l的方程:若不存在,請說明理由.20.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.21.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.22.(10分)已知數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】構(gòu)造函數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.2、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A3、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.4、D【解析】求出函數(shù)在時值的集合,函數(shù)在時值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當時,在上單調(diào)遞增,,,則在上值的集合是,當時,,,當時,,當時,,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域為,于是得,則,解得,所以實數(shù)的取值范圍是.故選:D5、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A6、B【解析】根據(jù)題意,當時,有一個零點,進而將問題轉(zhuǎn)化為當時,有兩個實數(shù)根,再研究函數(shù)即可得答案.【詳解】解:因為存在三個零點,所以方程有三個實數(shù)根,因為當時,由得,解得,有且只有一個實數(shù)根,所以當時,有兩個實數(shù)根,即有兩個實數(shù)根,所以令,則,所以當時,,單調(diào)遞增,當時,,單調(diào)遞減,因為,,,所以的圖象如圖所示,所以有兩個實數(shù)根,則故選:B7、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設(shè)點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點,則面,有,則,設(shè)的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.8、D【解析】利用點到直線的距離公式,即可求得參數(shù)的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.9、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結(jié)合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.10、A【解析】設(shè)橢圓的標準方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關(guān)系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設(shè)橢圓的標準方程為,,則有已知,兩式相減得,即,,因為,解得故選:A.11、B【解析】由兩點的斜率公式可得答案.【詳解】直線經(jīng)過兩點,則故選:B12、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據(jù)題意,從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.4②.【解析】巧用“1”改變目標式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當且僅當即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題14、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.15、【解析】由焦距可得c,長軸長得到a,再根據(jù)可得答案.【詳解】因為橢圓的長軸長為4,則,焦距為2,由,得,則橢圓的標準方程為:.故答案為:.16、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤有1000元.(3).【解析】(1)對于平均數(shù),運用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關(guān)于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤.(3)該為古典概型,根據(jù)題意分別確定總的基本事件個數(shù),以及事件“快遞費為45元”包括的基本事件個數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設(shè)中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤為(元),所以該公司平均每天的利潤有1000元(3)設(shè)四件禮物分為二個包裹E、F,因為禮物A、C、D共重(千克),禮物B、C、D共重(千克),都超過5千克,故E和F的重量數(shù)分別有,,,,共5種,對應的快遞費分別為45、45、50,45,50(單位:元)故所求概率為.【點睛】主要考查了頻率分布直方圖的平均數(shù),中位數(shù)求解,以及古典概型,屬于中檔題.18、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析;(3)具體見解析.【解析】(1)對函數(shù)求導,進而求出單調(diào)區(qū)間和極值;(2)結(jié)合(1),并代入幾個特殊點,再結(jié)合函數(shù)的變化趨勢作出圖象;(3)結(jié)合(2),采用數(shù)形結(jié)合的方法求得答案.【小問1詳解】,時,,單調(diào)遞減,時,,單調(diào)遞增,故函數(shù)在x=-1處取得極小值為,無極大值.【小問2詳解】作圖說明:由(1)可知函數(shù)先減后增,有極小值;描出極小值點,原點和點(1,e);當時,函數(shù)增加得越來越快,當時,函數(shù)越來越接近于0.【小問3詳解】結(jié)合圖象可知,若,則方程有0個解;若,則方程有2個解;若或,則方程有1個解.19、(1)(2)存在:【解析】(1)根據(jù)題意,列出關(guān)于a,b,c的關(guān)系,計算求值,即可得答案.(2)由(1)可得B、F點坐標,可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設(shè)出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達定理,結(jié)合垂心的性質(zhì),列式求解,即可得答案.【小問1詳解】因為焦距為4,所以,即,又過點,所以,又,聯(lián)立求得,所以橢圓C的方程為【小問2詳解】由(1)可得,所以,因為F為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設(shè)直線l的方程為,,與橢圓聯(lián)立得,,所以,因為F為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時,直線l過點B,不符合題意,所以,所以存在直線l:,滿足題意.20、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設(shè)存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點使得21、(1)(2)詳見解析.【解析】(1)由,求導,得到,寫出切線方程;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論