2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第1頁
2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第2頁
2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第3頁
2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第4頁
2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆安徽省合肥十一中數(shù)學(xué)高二上期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是偶函數(shù)的導(dǎo)函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.2.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.3.已知等差數(shù)列,若,,則()A.1 B.C. D.34.若直線與平行,則實數(shù)m等于()A.1 B.C.4 D.05.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.6.已知直線,,點是拋物線上一點,則點到直線和的距離之和的最小值為()A.2 B.C.3 D.7.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.8.已知函數(shù),則()A.3 B.C. D.9.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.8010.在區(qū)間內(nèi)隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.11.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.412.已知點到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或15二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),向量,,,且,,則___________.14.已知,若共線,m+n=__.15.某中學(xué)高三(2)班甲,乙兩名同學(xué)自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.16.若兩條直線與互相垂直,則a的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求的極值;(2)設(shè)函數(shù),,,求證:.18.(12分)已知等差數(shù)列的前n項和為,若公差,且,,成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.19.(12分)已知數(shù)列,,,為其前n項和,且滿足.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和20.(12分)已知雙曲線及直線(1)若與有兩個不同的交點,求實數(shù)的取值范圍(2)若與交于,兩點,且線段中點的橫坐標(biāo)為,求線段的長21.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標(biāo)軸,且,兩點(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負(fù)半軸、y軸負(fù)半軸的交點,P為橢圓上在第一象限內(nèi)一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值22.(10分)如圖,在四棱錐中,底面,,,,,為上一點,且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因為,則,由得,可得,解得故選:C.2、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B3、C【解析】利用等差數(shù)列的通項公式進行求解.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得.故選:C.4、B【解析】兩直線平行的充要條件【詳解】由于,則,.故選:B5、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點E,F(xiàn)坐標(biāo),再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時取“=”,所以線段EF長的最小值為.故選:B6、C【解析】由拋物線的定義可知點到直線和的距離之和的最小值即為焦點到直線的距離.【詳解】解:由題意,拋物線的焦點為,準(zhǔn)線為,所以根據(jù)拋物線的定義可得點到直線的距離等于,所以點到直線和的距離之和的最小值即為焦點到直線的距離,故選:C.7、D【解析】根據(jù)已知條件可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.8、B【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B9、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時必過N點,則則(當(dāng)且僅當(dāng)時等號成立)故選:C10、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.11、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B12、D【解析】利用點到直線距離公式即可得出.【詳解】解:點到直線的距離為1,解得:m=15或5故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:14、【解析】根據(jù)空間向量平行的坐標(biāo)運算求出m,n,進而求得答案.【詳解】由于,因為,所以存在,使得,于是,則.故答案為:.15、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:11116、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),無極大值(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,進而確定極值點,求得答案;(2)將要證明的不等式變形為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性,求其最值,進而證明結(jié)論.【小問1詳解】當(dāng)時,,,由得,列表得:1--0+減減極小值增由上表可知,無極大值.;【小問2詳解】證明:,即證;∵,則,故只需證,即證令,,得,得,∴在上遞增,在上遞減∴,∴,∴.18、(1);(2).【解析】(1)由等差數(shù)列的通項公式、前n項和公式結(jié)合等比數(shù)列的性質(zhì)列方程可得數(shù)列首項與公差,即可得解;(2)由,結(jié)合裂項相消法即可得解.【詳解】(1)因為數(shù)列為等差數(shù)列,,,,成等比數(shù)列,所以,所以,即,又因為,所以,所以;(2)因為,所以.【點睛】本題考查了等差數(shù)列與等比數(shù)列的綜合應(yīng)用及裂項相消法的應(yīng)用,考查了運算求解能力,屬于中檔題.19、(1)(2)【解析】(1)按照所給條件,先算出的表達式,再按照與的關(guān)系計算,;(2)裂項相消求和即可.【小問1詳解】由題可知數(shù)列是等差數(shù)列,所以,,又因為,所以;【小問2詳解】所以;故答案為:,.20、(1)且;(2)【解析】(1)聯(lián)立直線與雙曲線方程,利用方程組與兩個交點,求出k的范圍(2)設(shè)交點A(x1,y1),B(x2,y2),利用韋達定理以及弦長公式求解即可【詳解】(1)聯(lián)立y=2可得∵與有兩個不同的交點,且,且(2)設(shè),由(1)可知,又中點的橫坐標(biāo)為,,或又由(1)可知,為與有兩個不同交點時,21、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標(biāo),再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點坐標(biāo)滿足,即,直線PM:,可得,直線PN:,可得,.22、(1)證明見解析(2)【解析】(1)以為原點,、、分別為軸、軸、軸建立空間直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論