陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題含解析_第1頁
陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題含解析_第2頁
陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題含解析_第3頁
陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題含解析_第4頁
陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省四校聯(lián)考2026屆高二上數(shù)學期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在一次拋硬幣的試驗中,某同學用一枚質地均勻的硬幣做了100次試驗,發(fā)現(xiàn)正面朝上出現(xiàn)了48次,那么出現(xiàn)正面朝上的頻率和概率分別為()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.482.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.3.橢圓的焦點坐標為()A., B.,C., D.,4.在下列四條拋物線中,焦點到準線的距離為1的是()A. B.C. D.5.阿基米德不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積公式,設橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或6.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.7.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-328.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.9.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.1610.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-211.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.8112.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數(shù)k的取值范圍是___________.14.過雙曲線的右焦點作一條與其漸近線平行的直線,交于點.若點的橫坐標為,則的離心率為-.15.已知拋物線的焦點為F,過F的直線l交拋物線C于AB兩點,且,則p的值為______16.圓上的點到直線的距離的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓與直線相切(1)求圓O的標準方程;(2)若線段AB的端點A在圓O上運動,端點B的坐標是,求線段AB的中點M的軌跡方程18.(12分)已知直線過點,且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當直線與軸平行時,求的值.19.(12分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.20.(12分)已知四棱錐的底面是矩形,底面,且,設E、F、G分別為PC、BC、CD的中點,H為EG的中點,如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.21.(12分)如圖,正方形與梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,為的中點(1)求證:平面平面;(2)求二面角的正切值22.(10分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】頻率跟實驗次數(shù)有關,概率是一種現(xiàn)象的固有屬性,與實驗次數(shù)無關,即可得到答案.【詳解】頻率跟實驗次數(shù)有關,出現(xiàn)正面朝上的頻率為實驗中出現(xiàn)正面朝上的次數(shù)除以總試驗次數(shù),故為.概率是拋硬幣試驗的固有屬性,與實驗次數(shù)無關,拋硬幣正面朝上的概率為.故選:C2、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題3、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.4、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D5、B【解析】根據(jù)題意列出的關系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據(jù)題意,可得,所以橢圓的標準方程為或.故選:B6、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據(jù)計算的值7、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C8、C【解析】設出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.9、C【解析】根據(jù)等比數(shù)列的性質求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C10、C【解析】以為建立平面直角坐標系,設,把向量的數(shù)量積用坐標表示后可得最小值【詳解】如圖,以為建立平面直角坐標系,則,設,,,,,∴,∴當時,取得最小值故選:C【點睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標系,把向量的數(shù)量積轉化為坐標表示11、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A12、A【解析】由得,為邊的中點得,設,所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設,所以,所以,當時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、【解析】雙曲線的右焦點為.不妨設所作直線與雙曲線的漸近線平行,其方程為,代入求得點的橫坐標為,由,得,解之得,(舍去,因為離心率),故雙曲線的離心率為.考點:1.雙曲線的幾何性質;2.直線方程.15、3【解析】根據(jù)拋物線焦點弦性質求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設,,,則,∵,所以,,∴,當且僅當m=0時,取..故答案為:3.16、【解析】先求得圓心到直線的距離,結合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由圓心到直線的距離等于半徑即可求出.(2)由相關點法即可求出軌跡方程.【小問1詳解】已知圓與直線相切,所以圓心到直線的距離為半徑.所以,所以圓O的標準方程為:【小問2詳解】設因為AB的中點是M,則,所以,又因A在圓O上運動,則,所以帶入有:,化簡得:.線段AB的中點M的軌跡方程為:.18、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時直線的方程為,求出交點坐標即可求出距離.【詳解】(1)由題可得當且時,取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當直線與軸平行時,方程為,設直線與直線,分別交于點,,則,,所以,即,所以.19、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結合,可得平面,進而可得結論;(2)取的中點,的中點,連接,,以點為坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,求這兩個法向量的夾角即可得結果.【詳解】解:(1)因為平面平面,交線為,又,所以平面,,又,,則平面,平面,所以,;(2)取的中點,的中點,連接,,則平面,平面;以點坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系如圖所示,已知,則,,,,,,則,,設平面的一個法向量,由得令,則,,即;平面的一個法向量為;.所以二面角的余弦值為.【點睛】本題考查線線垂直的證明以及空間向量發(fā)求面面角,考查學生計算能力以及空間想象能力,是中檔題.20、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點,易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標,求得的坐標,平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點K,連接BK,因為設E、F、G分別為PC、BC、CD的中點,所以H為CK的中點,所以,又平面平面,所以平面;(2)建立如圖所示直角坐標系則,所以,設平面PBC一個法向量為:,則,有,令,,設直線FH與平面所成角為,所以,因為,所以.【點睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉化化歸的思想和邏輯推理,運算求解的能力,屬于中檔題.21、(1)見解析;(2).【解析】(1)證明BC⊥平面BDE即可;(2)以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小問1詳解】∵ADEF為正方形∴ED⊥AD又∵正方形ADEF與梯形ABCD所在的平面互相垂直,且ED?平面ADEF∴ED⊥平面ABCD∵BC?平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,則,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE與BD平面BDE,∴BC⊥平面BDE又∵BC?平面BEC∴平面BDE⊥平面BEC;【小問2詳解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三線兩兩垂直,故以D為原點,DA、DC、DE分別為x軸、y軸、z軸建立空間直角坐標系D-xyz:則,則設為平面BDM的法向量,則,取,取平面BCD的法向量為,設二面角的大小為θ,則,∴.22、(1)見解析;(2).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論