下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
《概率論與數(shù)理統(tǒng)計》
第一章概率論的基本概念
§2.樣本空間、隨機事件
1.事件間的關(guān)系則稱事件B包含事件A,指事件A發(fā)生必然導致事件B發(fā)生
稱為事件A與事件B的和事件,指當且僅當A,B中至少仃一個發(fā)生時,事件發(fā)生
稱為事件A與事件B的積事件,指當A.B同時發(fā)生時,事件發(fā)生
稱為事件A與事件B的差事件,指當且僅當A發(fā)生、B不發(fā)生時,事件發(fā)生
,則稱事件A與B是互不相容的,或互斥的,指事件A與事件B不能同時發(fā)生,基本事
件是兩兩互不相容的
,則稱事件A與事件B互為逆事件,乂稱事件A與事件B互為對立事件
2.運算規(guī)則交換律
結(jié)合律(AD8)<JC=Au(3uC)(Ac3)C=A(BnC)
分配律4D(5cC)=(4dB)c(AuC)
AC(8DC)=(AC8)(ACC)
德摩根律AD8=ACBAr\B=AuB
§3.頻率與概率
定義在相同的條件下,進行了n次試驗,在這n次試驗中,事件A發(fā)生的次數(shù)稱為事件A發(fā)生的頻數(shù),
比值稱為事件A發(fā)生的頻率
概率:設(shè)E是隨機試驗,S是它的樣本空間,對于E的每一事件A賦予一個實數(shù),記為P(A),稱為事件
的概率
1.概率滿足下列條件:
(I)非負性:對于每一個事件A
<2)規(guī)范性:對于必然事件S
(3)可列可加性:設(shè)是兩兩互不相容的事件,有(可以取)
2.概率的一些重要性質(zhì):
(i)夕(。)=0
(ii)若是兩兩互不相容的事件,則有(可以取)
(iii)設(shè)A,B是兩個事件若,則,
(iv)對于任意事件A,
(v)P(A)=1-P(A)(逆事件的概率)
(vi)對于任意事件A,B有
§4等可能概型(古典概型)
等可能概型:試驗的樣本空間只包含有限個元素,試驗中每個事件發(fā)生的可能性相同
若事件A包含k個基本事件,即,里
(I)§5.條件概率
(2)定義:設(shè)A.B是兩個事件,且,稱為事件A發(fā)生的條件二事件B發(fā)生的條件概率
(3)條件概率符合概率定義中的三個條件
lo非負性:對于某一事件B.有
(4)2。規(guī)范性:對于必然事件S,
3可列可加性:設(shè)是兩兩互不相容的事件,則有
乘法定理設(shè),則有稱為乘法公式
全概率公式:
貝葉斯公式:
§6.獨立性
定義設(shè)A,B是兩事件,如果滿足等式,則稱事件A,B相互獨立
定理一設(shè)A.B是兩事件,且,若A.B相互獨立,則
定理二若事件A和B相互獨立,則下列各對事件也相互獨立:A與
第二章隨機變量及其分布
§1隨機變量
定義設(shè)隨機試驗的樣本空間為是定義在樣本空間S上的實值單值函數(shù),稱為隨機變量
§2離散性隨機變量及其分布凈
離散隨機變量:有些隨機變量,它全部可能取到的值是有限個或可列無限多個,這種隨機變量稱為離
散型隨機變量
L滿足如下兩個條件(1),(2)=1
2.三種重要的離散型隨機變量
(I)分布
設(shè)隨機變量X只能取0與1兩個值,它的分布律是,則稱X服從以p為參數(shù)的分布或兩點分布.
(2)伯努利實驗、一項分布
設(shè)實驗E只有兩個可能結(jié)果:A與,則稱E為伯努利實驗.設(shè),此時?將E獨立重復的進行n次,則稱這
一串.重第的獨立實驗為n重伯努利實驗。
滿足條件(1),(2)=1注意到姑二項式的展開式中出現(xiàn)的那一項,我們稱隨機變量X服從參數(shù)為
n,p的二項分布。
(3)泊松分布
設(shè)隨機變量X所有可能取的值為0,1,2…,而取各個值的概率為其中是常數(shù),則稱X服從參數(shù)為的
泊松分布記為
§3隨機變量的分布函數(shù)
定義設(shè)X是一個隨機變量,x是任意實數(shù),函數(shù)
稱為X的分布函數(shù)
分布函數(shù),具有以下性質(zhì)(1)是一個不減函數(shù)(2)(3)
§4連續(xù)性隨機變量及其概率密度
連續(xù)隨機變量:如果對于隨機變量X的分布函數(shù)F(X),存在非負可積函數(shù),使對于任意函數(shù)x有則稱
x為連續(xù)性隨機變量,其中函數(shù)f(x)稱為X的概率密度函數(shù)、簡稱概率密度
I概率密度具有以下性質(zhì),滿足(1):
(3);(4)若在點x處連續(xù),則有
2,三種重要的連續(xù)型隨機變量
(1)均勻分布
若連續(xù)性隨機變量X具有概率密度,則成X在區(qū)間(a,b)上服從均勻分布.記為
(2)指數(shù)分布
若連續(xù)性隨機變量X的概率密度為其中為常數(shù),則稱X服從參數(shù)為的指數(shù)分布。
(3)正態(tài)分布
若連續(xù)型隨機變量X的概率密度為的正態(tài)分相或高斯分布,記為
特別,當時稱隨機變量X服從標準正態(tài)分布
§5隨機變量的函數(shù)的分布
定理設(shè)隨機變量X具有概率密度又設(shè)函數(shù)處處可導且恒有,則Y=是連續(xù)型隨機變量,其概率密度為
第三章多維隨機變量
§1二維隨機變量
定義設(shè)E是一個隨機試驗,它的樣本空間是和是定義在S上的隨機變量,稱為隨機變量,由它們構(gòu)
成的一個向量(X,Y)叫做二維隨機變量
設(shè)(X.Y)是二維隨機變量,對于任意實數(shù)x,y,二元函數(shù)稱為二維隨機變量(X,Y)的分布函數(shù)
如果二維隨機變量(X,Y)全部可能取到的值是有限對或可列無限多對,則稱(X,Y)是離散型的隨
機變量。
我們稱為二維離散型隨機變量(X.Y)的分布律。
對于二維隨機變量(X,Y)的分布函數(shù),如果存在非負可枳函數(shù)f(x,y),使對于任意x,y有則稱(X,
Y)是連續(xù)性的隨機變量,函數(shù)f(x,y)稱為隨機變量(X.Y)的概率密度,或稱為隨機變量X和Y的聯(lián)合
概率密度。
§2邊緣分布
二維隨機變量(X.Y)作為一個整體,具有分布函數(shù).而X和Y都是隨機變量,各自也有分布函數(shù),將
他們分別記為,依次稱為二維隨機變量(X,Y)關(guān)于X和關(guān)于Y的邊緣分布函數(shù)。
分別稱為(X,Y)關(guān)于X和關(guān)于Y的邊緣分布律。
分別稱,為X,Y關(guān)于X和關(guān)于Y的邊緣概率密度。
§3條件分布
定義設(shè)(X,Y)是二維離散型隨機變量,對于固定的j.若
則稱為在條件下隨機變量X的條件分布律,同樣為在條件下隨機變量X的條件分布律。
設(shè)二維離散型隨機變量(X,Y)的概率密度為,(X,Y)關(guān)于Y的邊緣概率密度為,若對于固定的
y.〉0.則稱為在Y=y的條件下X的條件概率密度,記為=
§4相互獨立的隨機變量
定義設(shè)及,分別是:維離散型隨機變量(X.Y)的分布函數(shù)及邊緣分布函數(shù).若對于所有x.y有,即,
則稱隨機變量X和Y是相互獨立的。
對于二維正態(tài)隨機變量(X,Y),X和Y相互獨立的充要條件是參數(shù)
§5兩個隨機變量的函數(shù)的分布
I.Z=X+Y的分布
設(shè)(X,Y)是二維連續(xù)型隨機變量,它具有概率密度.則Z=X+Y仍為連續(xù)性隨機變量,其概率密度為或
又若X和Y相互獨立,設(shè)(X,Y)關(guān)于X,Y的邊緣密度分別為則和這兩個公式稱為的卷積公式
有限個相互獨立的正態(tài)陵機變量的線性組合仍然服從正態(tài)分布
2,
設(shè)(X,Y)是二維連續(xù)型隨機變量,它具有概率密度,則
仍為連續(xù)性隨機變量其概率密度分別為又若X和Y相互獨立,設(shè)(X,Y)關(guān)于X.Y的邊緣密度分別為則可
化為
3M=imx{X,Y}及N=nin[X,y^^)^f
設(shè)X,Y是兩個相互獨立的隨機變量,它們的分布函數(shù)分別為由于不大于z等價于X和Y都不大于z故有乂
山于X和Y相互獨立,得到的分布函數(shù)為
N=min{X,Y}的分布函數(shù)為Fmin(z)=1-[1-Fx(z)Jl-FY(z)]
第四章隨機變量的數(shù)字特在
§i.數(shù)學期里
定義設(shè)離散型隨機變量X的分布律為,k=l,2,…若級數(shù)絕對收斂,則稱級數(shù)的和為隨機變量X的數(shù)學期
望,記為,即
設(shè)連續(xù)型隨機變量X的概率密度為,若積分絕對收斂,則稱積分的值為隨機變量X的數(shù)學期里,記
為.即
定理設(shè)Y是隨機變量X的函數(shù)Y=g(X)(g是連續(xù)函數(shù))
(i)如果X是離散型隨機變黃,它的分布律為,k=l,2,…若絕對收斂則有
(ii)如果X是連續(xù)型隨機變量,它的分概率密度為,若絕對收斂則有
數(shù)學期里的幾個重要性質(zhì)
1設(shè)C是常數(shù),則有
2設(shè)X是隨機變量.C是常數(shù),則有
3設(shè)X,Y是兩個隨機變量,則芍:
4設(shè)X,Y是相互獨立的隨機變量,則有
§2方差
定義設(shè)X是一個隨機變量,若存在,則稱為X的方差,記為D(X)即D(x)=,在應(yīng)用上還引入量,記
為,稱為標準差或均方差。
D(X)=E(X-E(X))2=E(X2)-(EX)2
方差的幾個重要性質(zhì)
1設(shè)C是常數(shù),則有
2設(shè)X是隨機變量.C是常數(shù),則有,
3設(shè)X,Y是兩個隨機變量,則有特別,若X,Y相互獨立,則有
4的充要條件是X以概率I取常數(shù).即
切比雪夫不等式:設(shè)隨機變量X具有數(shù)學期望,則對于任意正數(shù),不等式成立
§3協(xié)方差及相關(guān)系數(shù)
定義量稱為隨機變量X與Y的協(xié)方差為,即
而PXY=f°U(X,絲=稱為隨機變量X和丫的相關(guān)系數(shù)
7D(X)7D(Y)
對于任意兩個隨機變量x和Y、
協(xié)方差具有下述性質(zhì)
1Cov(X,Y)=C(?v(y,X),Cov(aX,bY)=abCov(X,Y)
2Cov(X}+X2,y)=Cov(Xi,Y)+Cov(X2,Y)
定理
2的充要條件是,存在常數(shù)a,b使
當。時,稱X和Y不相關(guān)
附:幾種
常用的概數(shù)學期
參數(shù)分布律或概率密度方差
率分布表望
分布
兩點分布0<p<lPp(l-p)
/7>1
二項式分
npnp(l-p)
布0</?<1
泊松分布/1>0P(X=Q=F-/=0,12…22
\_l-P
幾何分布O<p<l尸(X=Q=(1-〃)ip,A=l,2「.
PP2
a+b(b-a)?
均勻分布a<b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年憑祥市友誼關(guān)口岸經(jīng)濟區(qū)管理委員會招聘編外人員備考題庫含答案詳解
- 2026年凌云航空招聘操作工備考題庫及答案詳解1套
- 2026年孝感市云夢縣外國語小學出納崗位招聘備考題庫及參考答案詳解1套
- 2026年中國共產(chǎn)黨南寧市良慶區(qū)委員會組織部公開招聘工作人員備考題庫及完整答案詳解一套
- 2025年桂林市臨桂區(qū)公開招聘區(qū)管國有企業(yè)領(lǐng)導人員備考題庫及答案詳解1套
- 2026年四川港榮能源集團有限公司招聘備考題庫帶答案詳解
- 2025年巨野縣高鐵北站公開招聘客運服務(wù)人員備考題庫及一套參考答案詳解
- 2026年中國醫(yī)藥投資有限公司招聘備考題庫及一套參考答案詳解
- 安保主管考試題及答案
- 安全防火課件
- 新疆宗教事務(wù)條例課件
- 2025年工會主席述職報告模版(六)
- 2025四川成都軌道交通集團有限公司校招9人筆試歷年備考題庫附帶答案詳解試卷2套
- 藥品生產(chǎn)培訓課件
- 貴州省縣中新學校計劃項目2024-2025學年高一上學期期中聯(lián)考地理試題(解析版)
- 【2025年】天翼云解決方案架構(gòu)師認證考試筆試卷庫下(多選、判斷題)含答案
- 2024-2025學年度浙江特殊教育職業(yè)學院單招《語文》試卷附完整答案詳解(全優(yōu))
- 保護患者隱私培訓課件
- 收費站廉政培訓課件
- 高職單招課件
- 私募基金設(shè)立流程與風險控制報告
評論
0/150
提交評論