版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市靜海區(qū)大邱莊中學等四校2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若集合,,則()A. B. C. D.2.如圖,的斜二測直觀圖為等腰,其中,則原的面積為()A.2 B.4C. D.3.某單位共有名職工,其中不到歲的有人,歲的有人,歲及以上的有人,現(xiàn)用分層抽樣的方法,從中抽出名職工了解他們的健康情況.如果已知歲的職工抽取了人,則歲及以上的職工抽取的人數(shù)為()A. B.C. D.4.設,,,則、、的大小關(guān)系是()A. B.C. D.5.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知函數(shù),方程在有兩個解,記,則下列說法正確的是()A.函數(shù)的值域是B.若,的增區(qū)間為和C.若,則D.函數(shù)的最大值為7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.16 B.15C.18 D.178.函數(shù)的零點所在區(qū)間為:()A. B.C. D.9.若實數(shù),滿足,則的最小值是()A.18 B.9C.6 D.210.函數(shù)y=log2的定義域A.(,3) B.(,+∞)C.(,3) D.[,3]二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________.12.已知半徑為3的扇形面積為,則這個扇形的圓心角為________13.設是定義在區(qū)間上的嚴格增函數(shù).若,則a的取值范圍是______14.冪函數(shù)的圖象過點,則___________.15.函數(shù)最小正周期是________________16.函數(shù)定義域為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系中,為單位圓上一點,射線繞點按逆時針方向旋轉(zhuǎn)后交單位圓于點,點的橫坐標為(1)求的表達式,并求(2)若,求的值18.已知函數(shù)的圖象中相鄰兩條對稱軸之間的距離為,且直線是其圖象的一條對稱軸(1)求,的值;(2)在圖中畫出函數(shù)在區(qū)間上的圖象;(3)將函數(shù)的圖象上各點的橫坐標縮短為原來的(縱坐標不變),再把得到的圖象向左平移個單位,得到的圖象,求單調(diào)減區(qū)間.19.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求實數(shù)m值;(2)若﹁q是p的必要條件,求實數(shù)m的取值范圍20.已知函數(shù)(1)當時,在上恒成立,求的取值范圍;(2)當時,解關(guān)于的不等式21.一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量(克)隨著時間(小時)變化的函數(shù)關(guān)系式近似為,其中(1)若病人一次服用9克的藥劑,則有效治療時間可達多少小時?(2)若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)交集直接計算即可.【詳解】因為,,所以,故選:C2、D【解析】首先算出直觀圖面積,再根據(jù)平面圖形與直觀圖面積比為求解即可.【詳解】因為等腰是一平面圖形的直觀圖,直角邊,所以直角三角形的面積是.又因為平面圖形與直觀圖面積比為,所以原平面圖形的面積是.故選:D3、A【解析】計算抽樣比例,求出不到35歲的應抽取人數(shù),再求50歲及以上的應抽取人數(shù).【詳解】計算抽樣比例為,所以不到35歲的應抽取(人,所以50歲及以上的應抽取(人.故選:.4、B【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與、的大小關(guān)系,由此可得出、、的大小關(guān)系.【詳解】,即,,,因此,.故選:B.5、C【解析】根據(jù)三角函數(shù)表,在三角形中,當時,即可求解【詳解】在三角形中,,故在三角形中,“”是“”的充分必要條件故選:C【點睛】本題考查充要條件的判斷,屬于基礎題6、B【解析】利用函數(shù)的單調(diào)性判斷AB選項;解方程求出從而判斷C選項;舉反例判斷D選項.【詳解】對于A選項,當時,,,為偶函數(shù),當時,,任取,且,,若,則;若,則,即函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,圖像如圖示:結(jié)合偶函數(shù)的性質(zhì)可知,的值域是,故A選項錯誤;對于B選項,,當時,,,則為偶函數(shù),當時,,易知函數(shù)在區(qū)間上單調(diào)遞減,當時,,易知函數(shù)在區(qū)間上單調(diào)遞增,圖像如圖示:根據(jù)偶函數(shù)的性質(zhì)可知,函數(shù)的增區(qū)間為和,故B選項正確;對于C選項,若,圖像如圖示:若,則,與方程在有兩個解矛盾,故C選項錯誤;對于D選項,若時,,圖像如圖所示:當時,則與方程在有兩個解矛盾,進而函數(shù)的最大值為4錯誤,故D選項錯誤;故選:B7、B【解析】由三視圖還原的幾何體如圖所示,結(jié)合長方體的體積公式計算即可.【詳解】由圖可知,該幾何體是在一個長方體的右上角挖去一個小長方體,如圖,故該幾何體的體積為故選:B8、C【解析】利用函數(shù)的單調(diào)性及零點存在定理即得.【詳解】因為,所以函數(shù)單調(diào)遞減,,∴函數(shù)的零點所在區(qū)間為.故選:C.9、C【解析】,利用基本不等式注意等號成立條件,求最小值即可【詳解】∵,,∴當且僅當,即,時取等號∴的最小值為6故選:C【點睛】本題考查了利用基本不等式求和的最小值,注意應用基本不等式的前提條件:“一正二定三相等”10、A【解析】由真數(shù)大于0,求解對分式不等式得答案;【詳解】函數(shù)y=log2的定義域需滿足故選A.【點睛】】本題考查函數(shù)的定義域及其求法,考查分式不等式的解法,是中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】首先根據(jù)同角三角函數(shù)的基本關(guān)系求出,再利用二倍角公式及同角三角函數(shù)的基本關(guān)系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:12、【解析】由扇形的面積公式直接求解.【詳解】由扇形面積公式,可得圓心角,故答案為:.【點睛】(1)在弧度制下,計算扇形的面積和弧長比在角度制下更方便、簡捷(2)求扇形面積的最值應從扇形面積出發(fā),在弧度制下使問題轉(zhuǎn)化為關(guān)于α的不等式或利用二次函數(shù)求最值的方法確定相應最值.13、.【解析】根據(jù)題意,列出不等式組,即可求解.【詳解】由題意,函數(shù)是定義在區(qū)間上的嚴格增函數(shù),因為,可得,解得,所以實數(shù)a的取值范圍是.故答案為:.14、【解析】將點的坐標代入解析式可解得結(jié)果.【詳解】因為冪函數(shù)的圖象過點,所以,解得.故答案為:15、【解析】根據(jù)三角函數(shù)周期計算公式得出結(jié)果.【詳解】函數(shù)的最小正周期是故答案為:16、∪【解析】根據(jù)題意列出滿足的條件,解不等式組【詳解】由題意得,即,解得或,從而函數(shù)的定義域為∪.故答案為:∪.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由點的坐標可求得,再由三角函數(shù)的定義可求出,從而可求出的值,(2)由題意可得,則可求得,從而利用三角函數(shù)恒等變換公式可求得結(jié)果【小問1詳解】因為,所以,由三角函數(shù)定義,得所以【小問2詳解】因為,所以,因為,所以所以18、(1)..(2)見解析(3),【解析】(1)兩條對稱軸之間的距離是半個周期,求,當時,代入求(2)由(1)知,根據(jù)“五點法”畫出函數(shù)的圖象;(3)首先求圖象變換后的解析式,再令,,求函數(shù)的單調(diào)遞減區(qū)間.【詳解】(1)∵相鄰兩條對稱軸之間的距離為,∴的最小正周期,∴.∵直線是函數(shù)的圖象的一條對稱軸,∴.∴,∵,∴(2)由知0-1010故函數(shù)在區(qū)間上的圖象如圖(3)由的圖象上各點的橫坐標縮短為原來的(縱坐標不變),得到,圖象向左平移個單位后得到,,令,,∴函數(shù)的單調(diào)減區(qū)間為,【點睛】本題考查三角函數(shù)性質(zhì)和圖象的綜合問題,意在考查熟練掌握三角函數(shù)性質(zhì),一般“五點法”畫的圖象,若是函數(shù)圖象變換,1.左右平移,需根據(jù)“左+右-”的變換規(guī)律求解,2.周期變換(伸縮變換),若是函數(shù)橫坐標伸長(或縮短)到原來的倍,變換后的解析式為.19、(1)m=4;(2)m>6或m<-4【解析】(1)分別求得集合A、B,根據(jù)交集的結(jié)果,列出方程,即可得答案.(2)根據(jù)題意可得p是﹁q的充分條件,可得,先求得,根據(jù)包含關(guān)系,列出不等式,即可得答案.【詳解】解:(1)由題意得:A={x|-1≤x≤3,x∈R},B={x|m-3≤x≤m+3,x∈R,m∈R},∵A∩B={x|1≤x≤3,x∈R},∴,解得m=4(2)∵﹁q是p的必要條件,∴p是﹁q的充分條件,∴,又,∴或,解得m>6或m<-420、(1)(2)答案不唯一,具體見解析【解析】(1)利用參變量分離法可求得實數(shù)的取值范圍;(2)分、、、四種情況討論,結(jié)合二次不等式的解法可求得原不等式的解集.【小問1詳解】由題意得,當時,在上恒成立,即當時,在上恒成立,不等式可變?yōu)?,令,,則,故,解得【小問2詳解】當時,解不等式,即當時,解不等式,不等式可變?yōu)?,若時,不等式可變?yōu)椋傻?;若時,不等式可變?yōu)椋敃r,,可得或;當時,,即,可得且;當時,,可得或綜上:當時,原不等式的解集是;當時,原不等式的解集是;當時,原不等式的解集是;當時,原不等式的解集是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年新型信息技術(shù)服務企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年下灰車企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年城市軌道交通車廂用不銹鋼企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 2025至2030零售企業(yè)品牌年輕化戰(zhàn)略與營銷創(chuàng)新研究報告
- 2025至2030教育裝備市場需求變化及企業(yè)戰(zhàn)略布局研究報告
- 2025至2030中國跨境電商物流體系優(yōu)化及投資前景研究報告
- 2025-2030新材料產(chǎn)業(yè)研發(fā)應用現(xiàn)狀技術(shù)與市場投資方向規(guī)劃分析研究報告
- 2025-2030新加坡電子商務平臺市場發(fā)展現(xiàn)狀供需體系與投資機遇深度研究報告
- 2025-2030新加坡生物醫(yī)藥研發(fā)市場分析及商業(yè)投資方案與行業(yè)前景規(guī)劃
- 2025-2030新加坡物流倉儲業(yè)自動化技術(shù)發(fā)展現(xiàn)狀及投資布局風險管理報告
- 2025年濟寧職業(yè)技術(shù)學院毛澤東思想和中國特色社會主義理論體系概論期末考試模擬題必考題
- 2025-2026學年北師大版七年級生物上冊知識點清單
- 委托作品協(xié)議書
- m的認主協(xié)議書
- 2025至2030中國芳綸纖維行業(yè)發(fā)展分析及市場發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 尾牙宴活動策劃方案(3篇)
- 生蠔課件教學課件
- 2025年及未來5年市場數(shù)據(jù)中國機電安裝工程市場調(diào)查研究及行業(yè)投資潛力預測報告
- 2025年度運營數(shù)據(jù)支及決策對工作總結(jié)
- 2025年湖南省公務員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- kv高壓線防護施工方案
評論
0/150
提交評論