版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福州第一中學(xué)2026屆數(shù)學(xué)高一上期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若“”是“”的充分不必要條件,則()A. B.C. D.2.下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則3.直線截圓所得的線段長為()A.2 B.C.1 D.4.若是鈍角,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角5.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標(biāo)是A. B.C. D.6.半徑為2的扇形OAB中,已知弦AB的長為2,則的長為A. B.C. D.7.函數(shù)f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)8.下列敘述正確的是()A.三角形的內(nèi)角是第一象限角或第二象限角 B.鈍角是第二象限角C.第二象限角比第一象限角大 D.不相等的角終邊一定不同9.函數(shù)的圖像的一條對稱軸是()A. B.C. D.10.在平面直角坐標(biāo)系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,,則a、b的大小關(guān)系是______.(用“<”連接)12.已知,那么的值為___________.13.已知函數(shù)f(x)=|sinx|﹣cosx,給出以下四個命題:①f(x)的圖象關(guān)于y軸對稱;②f(x)在[﹣π,0]上是減函數(shù);③f(x)是周期函數(shù);④f(x)在[﹣π,π]上恰有三個零點其中真命題的序號是_____.(請寫出所有真命題的序號)14.冪函數(shù)的圖像經(jīng)過點,則_______15.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正確命題的個數(shù)是________16.已知集合,,則集合中元素的個數(shù)為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且.(1)求的定義域;(2)判斷的奇偶性并予以證明;(3)當(dāng)時,求使的的解集.18.已知點,圓(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值19.已知角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點.(1)求的值;(2)求的值.20.已知函數(shù)(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值21.已知函數(shù)的圖象關(guān)于原點對稱.(Ⅰ)求,的值;(Ⅱ)若函數(shù)在內(nèi)存在零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】轉(zhuǎn)化“”是“”的充分不必要條件為,分析即得解【詳解】由題意,“”是“”的充分不必要條件故故故選:B2、A【解析】AD選項,可以用不等式基本性質(zhì)進(jìn)行證明;BC選項,可以用舉出反例.【詳解】,顯然均大于等于0,兩邊平方得:,A正確;當(dāng)時,滿足,但,B錯誤;若,當(dāng)時,則,C錯誤;若,,則,D錯誤.故選:A3、C【解析】先算出圓心到直線的距離,進(jìn)而根據(jù)勾股定理求得答案.【詳解】圓,即圓心.圓心C到直線的距離,則直線截圓所得線段長為:.故選:C.4、D【解析】由求出,結(jié)合不等式性質(zhì)即可求解.【詳解】,,,在第四象限.故選:D5、A【解析】設(shè)C的坐標(biāo),由重心坐標(biāo)公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標(biāo).【詳解】設(shè)C(m,n),由重心坐標(biāo)公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當(dāng)時,BC重合,舍去,所以頂點C的坐標(biāo)是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標(biāo)公式,屬于中檔題.6、C【解析】由已知可求圓心角的大小,根據(jù)弧長公式即可計算得解【詳解】設(shè)扇形的弧長為l,圓心角大小為,∵半徑為2的扇形OAB中,弦AB的長為2,∴,∴故選C【點睛】本題主要考查了弧長公式的應(yīng)用,考查了數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題7、C【解析】,所以零點在區(qū)間(0,1)上考點:零點存在性定理8、B【解析】利用象限角、鈍角、終邊相同角的概念逐一判斷即可.【詳解】∵直角不屬于任何一個象限,故A不正確;鈍角屬于是第二象限角,故B正確;由于120°是第二象限角,390°是第一象限角,故C不正確;由于20°與360°+20°不相等,但終邊相同,故D不正確.故選B【點睛】本題考查象限角、象限界角、終邊相同的角的概念,綜合應(yīng)用舉反例、排除等手段,選出正確的答案9、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.10、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設(shè)切點為,所以,設(shè),則,,故選D.考點:1、圓的幾何性質(zhì);2、數(shù)形結(jié)合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質(zhì)、數(shù)形結(jié)合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關(guān)鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉(zhuǎn)化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調(diào)性法:首先確定函數(shù)的定義域,然后準(zhǔn)確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應(yīng)用方法②求的最小值的二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】容易看出,<0,>0,從而可得出a,b的大小關(guān)系【詳解】,>0,,∴a<b故答案為a<b【點睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,考查對數(shù)函數(shù)和指數(shù)函數(shù)的值域.意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.12、##0.8【解析】由誘導(dǎo)公式直接可得.詳解】.故答案為:13、①③【解析】求函數(shù)的奇偶性即可判斷①;結(jié)合取值范圍,可去絕對值號,結(jié)合輔助角公式求出函數(shù)的解析式,從而可求單調(diào)性即可判斷②;由f(x+2π)=f(x)可判斷③;求[﹣π,0]上的解析式,從而可求出該區(qū)間上的零點,結(jié)合函數(shù)的奇偶性即可判斷[﹣π,π]上零點個數(shù).【詳解】解:對于①,函數(shù)f(x)=sinx﹣cosx的定義域為R,且滿足f(﹣x)=f(x),所以f(x)是定義域在R上的偶函數(shù),其圖象關(guān)于y軸對稱,①為真命題;對于②,當(dāng)x∈[﹣π,0]時,sinx≤0,fx對于y=2sinx+π4,x+對于③,因為f(x+2π)=|sin(x+2π)|﹣cos(x+2π)=|sinx|﹣cosx=f(x),函數(shù)f(x)是周期為2π的周期函數(shù),③為真命題;對于④,當(dāng)x∈[﹣π,0]時,sinx≤0,fx=-sinx+cosx=-2sinx+π4,且x+π4∈-故答案為:①③.【點睛】關(guān)鍵點睛:在判斷命題②④時,關(guān)鍵是結(jié)合自變量的取值范圍去掉絕對值號,結(jié)合輔助角公式求出函數(shù)的解析式,再結(jié)合正弦函數(shù)的性質(zhì)進(jìn)行判斷.14、【解析】本題首先可以根據(jù)函數(shù)是冪函數(shù)設(shè)函數(shù)解析式為,然后帶入點即可求出的值,最后得出結(jié)果?!驹斀狻恳驗楹瘮?shù)是冪函數(shù),所以可設(shè)冪函數(shù),帶入點可得,解得,故冪函數(shù),即,答案為?!军c睛】本題考查函數(shù)解析式的求法,考查對冪函數(shù)的性質(zhì)的理解,可設(shè)冪函數(shù)解析式為,考查計算能力,是簡單題。15、3【解析】如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC?平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案為:3.16、2【解析】依題意,故,即元素個數(shù)為個.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)奇函數(shù),證明見解析;(3)【解析】(1)本題可通過求解得出結(jié)果;(2)本題可根據(jù)得出結(jié)果;(3)本題首先可判斷出當(dāng)時在定義域內(nèi)是增函數(shù),然后通過得出,通過計算即可得出結(jié)果.【詳解】(1)因為,所以,解得,的定義域為.(2)的定義域為,,故是奇函數(shù).(3)因為當(dāng)時,是增函數(shù),是減函數(shù),所以當(dāng)時在定義域內(nèi)是增函數(shù),即,,,,,解得,故使的的解集為.18、(1)或.(2)【解析】(1)分切線的斜率不存在與存在兩種情況分析.當(dāng)斜率存在時設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點M的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當(dāng)過點M的直線的斜率存在時,設(shè)方程為,即.由題意知,解得,∴方程為故過點M的圓的切線方程為或(2)∵圓心到直線的距離為,∴,解得【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.19、(1);(2)8.【解析】(1)根據(jù)三角函數(shù)的定義即可求得答案;(2)根據(jù)三角函數(shù)的定義求出,然后用誘導(dǎo)公式將原式化簡,進(jìn)而進(jìn)行弦化切,最后求出答案.【小問1詳解】由題意,,所以.【小問2詳解】由題意,,則原式.20、(1)最小正周期為,單調(diào)遞增區(qū)間為,k∈Z;(2)最大值為,最小值為【解析】(1)先通過降冪公式化簡得,進(jìn)而求出最小正周期和單調(diào)遞增區(qū)間;(2)通過,求出,進(jìn)而求出最大值和最小值.【小問1詳解】,∴函數(shù)f(x)的最小正周期為,令,k∈Z,則,k∈Z,∴函數(shù)f(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電站供電可靠性提升方案
- 2025年航海雷達(dá)題庫及答案(可下載)
- 公路水運交安C證考試題庫及答案2025新版
- BIM建筑材料循環(huán)利用方案
- 安全員A證考試考前沖刺訓(xùn)練試卷及參考答案詳解(達(dá)標(biāo)題)
- 2025年師德知識題庫及答案
- BIM工程價值評估方案
- 2022年阜陽幼兒師范高等??茖W(xué)校單招職業(yè)技能題庫及答案解析
- 安全員A證考試考試歷年機考真題集附完整答案詳解(各地真題)
- 安全員A證考試考試模擬試卷附完整答案詳解(歷年真題)
- 2025版6G智能軌道交通白皮書
- 《超純水制備培訓(xùn)資料》課件
- 定制手機采購合同協(xié)議
- CNAS-CL05-2009 實驗室生物安全認(rèn)可準(zhǔn)則
- 2024-2025學(xué)年湖北省新高考聯(lián)考協(xié)作體高一上學(xué)期12月聯(lián)考生物B及答案
- 攻擊面管理技術(shù)應(yīng)用指南 2024
- 電梯井道腳手架搭設(shè)方案
- DL∕T 622-2012 立式水輪發(fā)電機彈性金屬塑料推力軸瓦技術(shù)條件
- 傳染病學(xué)-病毒性肝炎
- 重慶市沙坪壩小學(xué)小學(xué)語文五年級上冊期末試卷
- 陶瓷巖板應(yīng)用技術(shù)規(guī)程
評論
0/150
提交評論