版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省陵川第一中學2026屆高一數(shù)學第一學期期末經(jīng)典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知扇形的周長為8,扇形圓心角的弧度數(shù)是2,則扇形的面積為()A.2 B.4C.6 D.82.函數(shù)f(x)=ln(-x)-x-2的零點所在區(qū)間為()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)3.直線l:與圓C:的位置關系是A.相切 B.相離C.相交 D.不確定4.已知函數(shù)是定義在R上的偶函數(shù),且,當時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.55.設函數(shù),若關于的方程有四個不同的解,且,則的取值范圍是()A. B.C. D.6.若函數(shù)的零點所在的區(qū)間為,則整數(shù)的值為()A. B.C. D.7.命題“,”的否定為()A., B.,C., D.,8.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.9.函數(shù)(且)的圖象恒過定點,若點在直線上,其中,則的最大值為A. B.C. D.10.已知函數(shù),若關于的方程有8個不等的實數(shù)根,則的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則的值為__________12.設集合,對其子集引進“勢”的概念;①空集的“勢”最?。虎诜强兆蛹脑卦蕉?,其“勢”越大;③若兩個子集的元素個數(shù)相同,則子集中最大的元素越大,子集的“勢”就越大.最大的元素相同,則第二大的元素越大,子集的“勢”就越大,以此類推.若將全部的子集按“勢”從小到大順序排列,則排在第位的子集是_________.13.已知實數(shù),執(zhí)行如圖所示的流程圖,則輸出的x不小于55的概率為________14.命題“”的否定是________________.15.已知,則的值是________,的值是________.16.已知且,函數(shù)的圖像恒過定點,若在冪函數(shù)的圖像上,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓,直線(1)直線l一定經(jīng)過哪一點;(2)若直線l平分圓C,求k的值;(3)若直線l與圓C相交于A,B,求弦長的最小值及此時直線的方程18.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.19.“百姓開門七件事,事事都會生垃圾,垃圾分類益處多,環(huán)境保護靠你我”,為了推行垃圾分類,某公司將原處理垃圾可獲利萬元的一條處理垃圾流水線,通過技術改造后,開發(fā)引進生態(tài)項目.經(jīng)過測算,發(fā)現(xiàn)該流水線改造后獲利萬元與技術投入萬元之間滿足的關系式:.該公司希望流水線改造后獲利不少于萬元,其中為常數(shù),且.(1)試求該流水線技術投入的取值范圍;(2)求流水線改造后獲利的最大值,并求出此時的技術投入的值.20.已知函數(shù),(1)求函數(shù)的定義域;(2)試討論關于x的不等式的解集21.已知角在第二象限,且(1)求的值;(2)若,且為第一象限角,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由給定條件求出扇形半徑和弧長,再由扇形面積公式求出面積得解.【詳解】設扇形所在圓半徑r,則扇形弧長,而,由此得,所以扇形的面積.故選:B2、A【解析】先計算,,根據(jù)函數(shù)的零點存在性定理可得函數(shù)的零點所在的區(qū)間【詳解】函數(shù),時函數(shù)是連續(xù)函數(shù),,,故有,根據(jù)函數(shù)零點存在性定理可得,函數(shù)的零點所在的區(qū)間為,故選:【點睛】本題主要考查函數(shù)的零點存在性定理的應用,不等式的性質(zhì),屬于基礎題3、C【解析】利用點到直線的距離公式求出直線和圓的距離,即可作出判斷.【詳解】圓C:的圓心坐標為:,則圓心到直線的距離,所以圓心在直線l上,故直線與圓相交故選C【點睛】本題考查的知識要點:直線與圓的位置關系的應用,點到直線的距離公式的應用4、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結合零點的定義進行求解即可.【詳解】因為,所以函數(shù)的周期為,當時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C5、D【解析】由題意,根據(jù)圖象得到,,,,,推出.令,,而函數(shù).即可求解.【詳解】【點睛】方法點睛:已知函數(shù)零點個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結合的方法求解.6、C【解析】結合函數(shù)單調(diào)性,由零點存在性定理可得解.【詳解】由為增函數(shù),且,可得零點所在的區(qū)間為,所以.故選:C.7、B【解析】利用含有量詞的命題的否定方法:先改變量詞,然后再否定結論,判斷即可.【詳解】解:由含有量詞的命題的否定方法:先改變量詞,然后再否定結論可得,命題“”的否定為:.故選:B.8、C【解析】以作為基底表示出,利用平面向量基本定理,即可求出【詳解】∵分別是的中點,∴.又,∴.故選C.【點睛】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力9、D【解析】∵由得,∴函數(shù)(且)的圖像恒過定點,∵點在直線上,∴,∵,當且僅當,即時取等號,∴,∴最大值為,故選D【名師點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤10、D【解析】畫出函數(shù)的圖象,利用函數(shù)的圖象,判斷的范圍,然后利用二次函數(shù)的性質(zhì)求解的范圍【詳解】解:函數(shù),的圖象如圖:關于的方程有8個不等的實數(shù)根,必須有兩個不相等的實數(shù)根且兩根位于之間,由函數(shù)圖象可知,.令,方程化為:,,,開口向下,對稱軸為:,可知:的最大值為:,的最小值為:2故選:【點睛】本題考查函數(shù)與方程的應用,函數(shù)的零點個數(shù)的判斷與應用,考查數(shù)形結合以及計算能力,屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα?sinα=(不合題意,舍去),∴,故答案為?1.12、【解析】根據(jù)題意依次按“勢”從小到大順序排列,得到答案.【詳解】根據(jù)題意,將全部的子集按“勢”從小到大順序排列為:,,,,,,,.故排在第6的子集為.故答案為:13、【解析】設實數(shù)x∈[1,9],經(jīng)過第一次循環(huán)得到x=2x+1,n=2,經(jīng)過第二循環(huán)得到x=2(2x+1)+1,n=3,經(jīng)過第三次循環(huán)得到x=2[2(2x+1)+1]+1,n=4此時輸出x,輸出的值為8x+7,令8x+7?55,得x?6,由幾何概型得到輸出的x不小于55的概率為.故答案為.14、.【解析】根據(jù)含有一個量詞的命題的否定可得結果【詳解】由含有一個量詞的命題的否定可得,命題“”的否定為“”故答案為【點睛】對于含有量詞的命題的否定要注意兩點:一是要改換量詞,把特稱(全稱)量詞改為全稱(特稱)量詞;二是把命題進行否定.本題考查特稱命題的否定,屬于簡單題15、①.②.【解析】將化為可得值,通過兩角和的正切公式可得的值.【詳解】因為,所以;,故答案為:,.16、【解析】由題意得三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)弦長的最小值為,此時直線的方程為【解析】(1)由可求出結果;(2)轉化為圓心在直線上可求出結果;(3)當時,弦長最小,根據(jù)垂直關系求出直線斜率,根據(jù)點斜式求出直線的方程,利用勾股定理可求出最小弦長.【詳解】(1)由得得,所以直線l一定經(jīng)過點.(2)因為直線l平分圓C,所以圓心在直線上,所以,解得.(3)依題意可知當時,弦長最小,此時,所以,所以,即,圓心到直線的距離,所以.所以弦長的最小值為,此時直線的方程為.【點睛】關鍵點點睛:(3)中,將弦長最小轉化為是解題關鍵.18、(1);(2).【解析】因為角終邊經(jīng)過點,設,,則,所以,,.(1)即得解;(2)化簡即可得解.試題解析:因為角終邊經(jīng)過點,設,,則,所以,,.(1)(2)19、(1);(2)當時,,此時;當時,,此時.【解析】(1)由題意得出,解此不等式即可得出的取值范圍;(2)比較與的大小關系,分析二次函數(shù)在區(qū)間上的單調(diào)性,由此可得出函數(shù)的最大值及其對應的的值.【詳解】(1),,由題意可得,即,解得,因此,該流水線技術投入的取值范圍是;(2)二次函數(shù)的圖象開口向下,且對稱軸為直線.①當時,即當時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以,;②當時,即當時,函數(shù)在區(qū)間上單調(diào)遞減,所以,.綜上所述,當時,;當時,【點睛】本題考查二次函數(shù)模型的應用,同時也考查了二次函數(shù)最值的求解,考查分類討論思想的應用,屬于中等題.20、(1)(2)答案見解析【解析】(1)解不等式得出定義域;(2)利用對數(shù)函數(shù)的單調(diào)性解不等式得出解集.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門窗安裝施工方案標準
- 非暴力溝通經(jīng)典讀書心得與實踐技巧
- 成人教育畢業(yè)生職業(yè)發(fā)展規(guī)劃范文
- 基礎會計崗位職責說明及績效考核
- 家禽加工生產(chǎn)工藝流程
- 2026年智能化技術助力電氣工程創(chuàng)新發(fā)展
- 2026年BIM與傳統(tǒng)設計方法的比較案例分析
- 物流運輸合同范本及風險控制指南
- 2026年橋梁耐久性評估的方法學探討
- 2026年可持續(xù)交通基礎設施建設的綠色施工
- 模擬智能交通信號燈課件
- 合肥市軌道交通集團有限公司招聘筆試題庫及答案2025
- 《智慧水電廠建設技術規(guī)范》
- 2.3《河流與湖泊》學案(第2課時)
- 工地臨建合同(標準版)
- GB/T 46275-2025中餐評價規(guī)范
- 2025至2030供水產(chǎn)業(yè)行業(yè)項目調(diào)研及市場前景預測評估報告
- 2025年6月大學英語四級閱讀試題及答案
- 神經(jīng)內(nèi)外科會診轉診協(xié)作規(guī)范
- 高中詩歌手法鑒賞考試題
- 2025年及未來5年中國幽門螺桿菌藥物行業(yè)市場調(diào)查研究及發(fā)展戰(zhàn)略規(guī)劃報告
評論
0/150
提交評論