版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
南昌市重點中學2026屆數(shù)學高三上期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.2.函數(shù)f(x)=2x-3A.[32C.[323.已知,若則實數(shù)的取值范圍是()A. B. C. D.4.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是()A.45 B.50 C.55 D.605.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.6.在復平面內(nèi),復數(shù)對應(yīng)的點的坐標為()A. B. C. D.7.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.8.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.9.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.10.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形11.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.12.已知等式成立,則()A.0 B.5 C.7 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.14.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.15.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.16.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設(shè),求的取值范圍.18.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當時,試判斷的零點個數(shù).19.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.20.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.21.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.22.(10分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.2、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx3、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運算求解的能力,屬于中檔題,4、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題5、A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.6、C【解析】
利用復數(shù)的運算法則、幾何意義即可得出.【詳解】解:復數(shù)i(2+i)=2i﹣1對應(yīng)的點的坐標為(﹣1,2),故選:C【點睛】本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.7、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.8、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設(shè),,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎(chǔ)題.9、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數(shù)的圖像,,因為是奇函數(shù),所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.10、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.11、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當時,的展開式中的系數(shù)為.當,時,系數(shù)為;當,時,系數(shù)為;當,時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.12、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
①根據(jù)向量數(shù)量積的坐標表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.14、3-260【解析】
(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎(chǔ)題.15、3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).16、【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數(shù)值求值,考查正弦定理的應(yīng)用.18、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.19、(1)詳見解析;(2)詳見解析.【解析】
(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.20、(1)證明見解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關(guān)系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調(diào)遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題21、(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點,且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 38387-2025橋梁橡膠降噪伸縮裝置
- 妊娠期外陰陰道炎的復發(fā)預(yù)防策略與效果評價的系統(tǒng)綜述
- 病理學考試題褲及答案
- 妊娠ITP合并自身免疫病的診療策略
- 女職工職業(yè)相關(guān)婦科疾病預(yù)防策略
- 多重耐藥菌感染的防控策略與實踐
- 多藥耐藥腫瘤的質(zhì)子治療精準調(diào)控策略
- 化工制圖技術(shù)考試及答案
- 2025年高職室內(nèi)藝術(shù)設(shè)計(室內(nèi)軟裝設(shè)計)試題及答案
- 2025年大學大三(高級財務(wù)會計)外幣業(yè)務(wù)處理綜合測試試題及答案
- 2025年GMAT邏輯推理解析試題
- 海岸帶調(diào)查技術(shù)規(guī)程 國家海洋局908專項辦公室編
- 2025-2030電子特氣行業(yè)純度標準升級對晶圓制造良率影響深度分析報告
- 2025年九江職業(yè)大學單招《職業(yè)適應(yīng)性測試》模擬試題(基礎(chǔ)題)附答案詳解
- 防御性駕駛安全培訓內(nèi)容
- 除夕年夜飯作文600字9篇范文
- 青年積分培養(yǎng)管理辦法
- CJ/T 43-2005水處理用濾料
- 2025年河北石家莊印鈔有限公司招聘13人筆試參考題庫附帶答案詳解
- DB37T 4839-2025電化學儲能電站驗收規(guī)范
- 第四單元 《辨識媒介信息》公開課一等獎創(chuàng)新教案統(tǒng)編版高中語文必修下冊
評論
0/150
提交評論