安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省阜陽(yáng)市臨泉縣一中2026屆數(shù)學(xué)高三上期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列圖形中,不是三棱柱展開(kāi)圖的是()A. B. C. D.2.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱(chēng)為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺(jué)得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.3.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]4.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要6.已知函數(shù)(表示不超過(guò)x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.7.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.8.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.9.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切10.設(shè)全集,集合,.則集合等于()A. B. C. D.11.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.12.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實(shí)數(shù)的值是_______.14.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為_(kāi)____.15.根據(jù)如圖所示的偽代碼,輸出的值為_(kāi)_____.16.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.18.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.19.(12分)已知?jiǎng)訄AQ經(jīng)過(guò)定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動(dòng)圓圓心Q的軌跡為曲線C.(1)求C的方程,并說(shuō)明C是什么曲線?(2)設(shè)點(diǎn)P的坐標(biāo)為,過(guò)點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過(guò)點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.20.(12分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過(guò)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.21.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)三棱柱的展開(kāi)圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開(kāi)圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開(kāi)圖的判斷,屬于基礎(chǔ)題.2、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.3、B【解析】

先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

求出復(fù)數(shù),得出其對(duì)應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對(duì)應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.6、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過(guò)和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.7、D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱(chēng),排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱(chēng)是解題的關(guān)鍵.8、D【解析】

構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類(lèi)討論,考查推理能力,屬于中等題.9、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.10、A【解析】

先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.11、A【解析】

畫(huà)出函數(shù)的圖像,函數(shù)對(duì)稱(chēng)軸方程為,由圖可得與關(guān)于對(duì)稱(chēng),即得解.【詳解】函數(shù)的圖像如圖,對(duì)稱(chēng)軸方程為,,又,由圖可得與關(guān)于對(duì)稱(chēng),故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱(chēng)性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12、C【解析】

直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解即可.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

把向量進(jìn)行轉(zhuǎn)化,用表示,利用基本不等式可求實(shí)數(shù)的值.【詳解】,解得=1.故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.15、7【解析】

表示初值S=1,i=1,分三次循環(huán)計(jì)算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點(diǎn)睛】本題考查在程序語(yǔ)句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問(wèn)題,屬于基礎(chǔ)題.16、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)先求導(dǎo),再對(duì)m分類(lèi)討論,求出的單調(diào)性;(2)對(duì)m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,則.則不合題意當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.則,即又因?yàn)閱握{(diào)遞增,且,故綜上,【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1)(2)證明見(jiàn)解析【解析】

(1)依題意可得,考慮到,則有再分類(lèi)討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無(wú)解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類(lèi)討論法解絕對(duì)值不等式,基本不等式的應(yīng)用,屬于中檔題.19、(1),拋物線;(2)存在,.【解析】

(1)設(shè),易得,化簡(jiǎn)即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡(jiǎn)得,所以動(dòng)圓圓心Q的軌跡方程為,它是以F為焦點(diǎn),以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因?yàn)?,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時(shí)直線m的斜率的取值范圍為.【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問(wèn)題,考查學(xué)生的計(jì)算能力,是一道中檔題.20、(1)見(jiàn)解析(2)直線過(guò)定點(diǎn).【解析】

(1)設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,設(shè)出點(diǎn)坐標(biāo)并代入切線的方程,同理將點(diǎn)坐標(biāo)代入切線的方程,利用韋達(dá)定理求得線段中點(diǎn)的橫坐標(biāo),由此判斷出軸.(2)求得點(diǎn)的縱坐標(biāo),由此求得點(diǎn)坐標(biāo),求得直線的斜率,由此求得直線的方程,化簡(jiǎn)后可得直線過(guò)定點(diǎn).【詳解】(1)設(shè)切點(diǎn),,,∴切線的斜率為,切線:,設(shè),則有,化簡(jiǎn)得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過(guò)定點(diǎn).【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線過(guò)定點(diǎn)問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1)證明見(jiàn)解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡(jiǎn)后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論.【詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡(jiǎn)可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無(wú)需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論