北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市西城區(qū)魯迅中學(xué)2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.2.已知過點(diǎn)的直線與圓相切,且與直線平行,則()A.2 B.1C. D.3.已知數(shù)列滿足,則()A.2 B.C.1 D.4.已知關(guān)于的不等式的解集是,則的值是()A. B.5C. D.75.已知是雙曲線C的兩個焦點(diǎn),P為C上一點(diǎn),且,則C的離心率為()A. B.C. D.6.已知直線與直線平行,且直線在軸上的截距比在軸上的截距大,則直線的方程為()A. B.C. D.7.直線過雙曲線:的右焦點(diǎn),在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點(diǎn),若∠OPQ=90°(O為坐標(biāo)原點(diǎn)),則OPQ內(nèi)切圓的半徑為()A. B.C.1 D.8.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或29.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.010.已知是拋物線的焦點(diǎn),為拋物線上的動點(diǎn),且的坐標(biāo)為,則的最小值是A. B.C. D.11.已知數(shù)列滿足:,,則()A. B.C. D.12.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l:和圓C:,過直線l上一點(diǎn)P作圓C的一條切線,切點(diǎn)為A,則的最小值為______14.已知雙曲線的漸近線方程為,,分別為C的左,右焦點(diǎn),若動點(diǎn)P在C的右支上,則的最小值是______15.若圓與圓相交,則的取值范圍是__________.16.若數(shù)列的前n項(xiàng)和,則其通項(xiàng)公式________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和18.(12分)已知橢圓:()的焦點(diǎn)坐標(biāo)為,長軸長是短軸長的2倍(1)求橢圓的方程;(2)已知直線不過點(diǎn)且與橢圓交于兩點(diǎn),從下面①②中選取一個作為條件,證明另一個成立.①直線的斜率分別為,則;②直線過定點(diǎn).19.(12分)如圖,C是以為直徑的圓上異于的點(diǎn),平面平面分別是的中點(diǎn).(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.20.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長短不一、質(zhì)地均勻的細(xì)直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點(diǎn),且與拋物線的對稱軸垂直的直線被拋物線截得的弦),若將這些細(xì)直金屬棒,隨意丟入該水杯中,實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)細(xì)棒重心最低時,達(dá)到靜止?fàn)顟B(tài),此時細(xì)棒交匯于一點(diǎn).(1)請結(jié)合你學(xué)過的數(shù)學(xué)知識,猜想細(xì)棒交匯點(diǎn)的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點(diǎn)為原點(diǎn),建立如圖所示直角坐標(biāo)系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細(xì)直金屬棒視為拋物線的弦,且弦長度為,以細(xì)直金屬棒的中點(diǎn)為其重心,請從數(shù)學(xué)角度解釋上述實(shí)驗(yàn)現(xiàn)象.21.(12分)已知數(shù)列的首項(xiàng),,,.(1)證明:為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和22.(10分)已知動圓過點(diǎn)且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點(diǎn),點(diǎn)滿足求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】直線AC、BD與坐標(biāo)軸重合時求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點(diǎn)為橢圓頂點(diǎn)時,而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時,設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A2、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因?yàn)榍芯€與直線平行,所以切線方程可設(shè)為因?yàn)榍芯€過點(diǎn)P(2,2),所以因?yàn)榕c圓相切,所以故選:C3、D【解析】首先得到數(shù)列的周期,再計(jì)算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D4、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因?yàn)殛P(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D5、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因?yàn)?,由雙曲線的定義可得,所以,;因?yàn)?由余弦定理可得,整理可得,所以,即.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:雙曲線的定義是入手點(diǎn),利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.6、A【解析】分析可知直線不過原點(diǎn),可設(shè)直線的方程為,其中且,利用斜率關(guān)系可求得實(shí)數(shù)的值,化簡可得直線的方程.【詳解】若直線過原點(diǎn),則直線在兩坐標(biāo)軸上的截距相等,不合乎題意,設(shè)直線的方程為,其中且,則直線的斜率為,解得,所以,直線的方程為,即.故選:A.7、B【解析】根據(jù)漸近線的對稱性,結(jié)合銳角三角函數(shù)定義、正切的二倍角公式、直角三角形內(nèi)切圓半徑公式進(jìn)行求解即可.【詳解】由雙曲線標(biāo)準(zhǔn)方程可知:,雙曲線的漸近線方程為:,因此,因?yàn)椤螼PQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設(shè)OPQ內(nèi)切圓的半徑為,于是有:,即,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用三角形內(nèi)切圓的性質(zhì)是解題的關(guān)鍵.8、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B9、A【解析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項(xiàng)式展開式,然后計(jì)算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項(xiàng)式展開式,然后計(jì)算出結(jié)果,屬于基礎(chǔ)題10、C【解析】由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角∴當(dāng)最小時,最小,則當(dāng)和拋物線相切時,最小設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為.∴,則.∴,∴故選C點(diǎn)睛:本題主要考查拋物線的定義和幾何性質(zhì),與焦點(diǎn)、準(zhǔn)線有關(guān)的問題一般情況下都與拋物線的定義有關(guān),解決這類問題一定要注意點(diǎn)到焦點(diǎn)的距離與點(diǎn)到準(zhǔn)線的距離的轉(zhuǎn)化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關(guān)系可求得距離弦長以及相關(guān)的最值等問題.11、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A12、B【解析】根據(jù)極限的定義計(jì)算【詳解】由題意故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】求出圓C的圓心坐標(biāo)、半徑,再借助圓的切線性質(zhì)及勾股定理列式計(jì)算作答.【詳解】圓C:,圓心為,半徑,點(diǎn)C到直線l的距離,由圓的切線性質(zhì)知:,當(dāng)且僅當(dāng),即點(diǎn)P是過點(diǎn)C作直線l的垂線的垂足時取“=”,所以的最小值為1故答案為:114、【解析】首先根據(jù)雙曲線的漸近線方程和焦點(diǎn)坐標(biāo),求出雙曲線的標(biāo)準(zhǔn)方程;設(shè),根據(jù)雙曲線的定義可知,從而利用基本不等式即可求出的最小值.【詳解】因?yàn)殡p曲線的漸近線方程為,焦點(diǎn)坐標(biāo)為,,所以,即,所以雙曲線方程為.設(shè),則,且,,當(dāng)且僅當(dāng),即時等號成立,所以的最小值是.故答案為:.15、【解析】根據(jù)圓心距小于兩半徑之和,大于兩半徑之差的絕對值列出不等式解出即可.【詳解】圓的圓心為原點(diǎn),半徑為,圓,即的圓心為,半徑為,由于兩圓相交,故,即,解得,即的取值范圍是,故答案為:16、【解析】由和計(jì)算【詳解】由題意,時,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)的公差為,由等差數(shù)列的通項(xiàng)公式結(jié)合條件可得答案.(2)由(1)可得,由錯位相減法可得答案.【小問1詳解】設(shè)的公差為,由已知得且,解得,,所以的通項(xiàng)公式為【小問2詳解】由(1)可得,所以,所以,兩式相減得:,所以,所以18、(1)(2)證明見解析【解析】(1)由條件可得,解出即可;(2)選①證②,當(dāng)直線的斜率存在時,設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后由可算出,即可證明,選②證①,設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后可算出.【小問1詳解】由條件可得,解得所以橢圓方程為【小問2詳解】選①證②:當(dāng)直線的斜率存在時,設(shè):,由得,則,由得即,即所以代入所以所以解得:(舍去),所以直線過定點(diǎn)當(dāng)直線斜率不存在時,設(shè):所以,由得所以,即,解得所以直線(不符合題意,舍去)綜上:直線過定點(diǎn)選②證①:由題意直線的斜率存在,設(shè):由得則,所以.19、(1)證明見解析(2)【解析】(1)由分別是的中點(diǎn),得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的一個法向量,結(jié)合向量的夾角公式,即可求解.【小問1詳解】證明:在,因?yàn)榉謩e是的中點(diǎn),所以,又因?yàn)槭菆A的直徑,所以,又由平面平面,平面平面,且平面,所以面,因?yàn)?,所以?【小問2詳解】解:由(1)知面,所以直線與平面所成角為,由題意知,以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面的直線為z軸,建立空間直角坐標(biāo)系,如圖所示,可得,則,,設(shè)面的法向量為,則,取,可得,所以,設(shè)面的法向量為,則,取,可得,所以,則,所以銳二面角的余弦值為.20、(1)拋物線的焦點(diǎn)或拋物面的焦點(diǎn)(2)答案見解析【解析】(1)結(jié)合通徑的特點(diǎn)可猜想得到結(jié)果;(2)將問題轉(zhuǎn)化為當(dāng)時,只要過點(diǎn),則中點(diǎn)到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問1詳解】根據(jù)通徑的特征,知通徑會經(jīng)過拋物線的焦點(diǎn)達(dá)到靜止?fàn)顟B(tài),則可猜想細(xì)棒交匯點(diǎn)位置為:拋物線焦點(diǎn)或拋物面的焦點(diǎn).【小問2詳解】解釋上述現(xiàn)象,即證:當(dāng)(為拋物線通徑)時,只要過點(diǎn),則中點(diǎn)到的距離最??;如圖所示,記點(diǎn)在拋物線準(zhǔn)線上的射影分別是,,由拋物線定義知:,當(dāng)過拋物線焦點(diǎn)時,點(diǎn)到準(zhǔn)線距離取得最小值,最小值為的一半,此時點(diǎn)到軸距離最小.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查拋物線的實(shí)際應(yīng)用問題,解題關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為拋物線焦點(diǎn)弦的中點(diǎn)到軸距離最小問題的證明,通過拋物線的定義可證得結(jié)論.21、(1)證明見解析(2)【解析】(1)利用等比數(shù)列的定義即可證明.(2)利用錯位相減法即可求解.【小問1詳解】當(dāng)時,,所以:數(shù)列是公比為3的等比數(shù)列;【小問2詳解】由(1)知,數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論