2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江蘇省鹽城市東臺市創(chuàng)新學(xué)校數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則()A. B.0C.1 D.22.以下命題是真命題的是()A.方差和標(biāo)準(zhǔn)差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點(diǎn)的中心D.若“”為假命題,則均為假命題3.若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,則點(diǎn)P(m,n)在直線x+y=4上的概率是()A. B.C. D.4.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.5.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.6.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}7.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.248.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直9.已知圓過點(diǎn),,且圓心在軸上,則圓的方程是()A. B.C. D.10.已知是拋物線的焦點(diǎn),為拋物線上的動點(diǎn),且的坐標(biāo)為,則的最小值是A. B.C. D.11.已知“”的必要不充分條件是“或”,則實(shí)數(shù)的最小值為()A. B.C. D.12.?dāng)?shù)列中,,,若,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的通項(xiàng)公式為,那么它的前項(xiàng)和___________.14.已知橢圓的右頂點(diǎn)為,為上一點(diǎn),則的最大值為______.15.直線被圓所截得的弦的長為_____16.已知長方體中,,,則點(diǎn)到平面的距離為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.18.(12分)在①,②,③,,成等比數(shù)列這三個條件中選擇符合題意的兩個條件,補(bǔ)充在下面的問題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.19.(12分)已知橢圓的離心率為,長軸長為,F(xiàn)為橢圓的右焦點(diǎn)(1)求橢圓C的方程;(2)經(jīng)過點(diǎn)的直線與橢圓C交于兩點(diǎn),,且以為直徑的圓經(jīng)過原點(diǎn),求直線的斜率;(3)點(diǎn)是以長軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過點(diǎn)且垂直于的直線過定點(diǎn)20.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點(diǎn)到平面的距離.21.(12分)如圖①,直角梯形中,,,點(diǎn),分別在,上,,,將四邊形沿折起,使得點(diǎn),分別到達(dá)點(diǎn),的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因?yàn)?,所以,所以,所?故選:D.2、A【解析】A:根據(jù)方差和標(biāo)準(zhǔn)差的定義進(jìn)行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點(diǎn)進(jìn)行判斷;D:根據(jù)“且”命題真假關(guān)系進(jìn)行判斷.【詳解】對于A,方差和標(biāo)準(zhǔn)差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點(diǎn)的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A3、D【解析】利用分布計數(shù)原理求出所有的基本事件個數(shù),在求出點(diǎn)落在直線x+y=4上包含的基本事件個數(shù),利用古典概型的概率個數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個結(jié)果出現(xiàn)的機(jī)會都是等可能的,點(diǎn)P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個,所以點(diǎn)P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點(diǎn):古典概型點(diǎn)評:本題考查先判斷出各個結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題4、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.5、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因?yàn)?,所以,解得故選:C6、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D7、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式相關(guān)計算求出公差,進(jìn)而求出首項(xiàng).【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B8、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因?yàn)?,所以,所以,垂?故選:B.9、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點(diǎn),的坐標(biāo)代入圓的方程即可求出答案.【詳解】因?yàn)閳A的圓心在軸上,所以設(shè)圓的方程為,因?yàn)辄c(diǎn),在圓上,所以,解得,所以圓的方程是.故選:B.10、C【解析】由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為過點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角∴當(dāng)最小時,最小,則當(dāng)和拋物線相切時,最小設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為.∴,則.∴,∴故選C點(diǎn)睛:本題主要考查拋物線的定義和幾何性質(zhì),與焦點(diǎn)、準(zhǔn)線有關(guān)的問題一般情況下都與拋物線的定義有關(guān),解決這類問題一定要注意點(diǎn)到焦點(diǎn)的距離與點(diǎn)到準(zhǔn)線的距離的轉(zhuǎn)化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關(guān)系可求得距離弦長以及相關(guān)的最值等問題.11、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因?yàn)椤啊钡谋匾怀浞謼l件是“或”,所以.實(shí)數(shù)的最小值為.故選:A12、C【解析】由已知得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意知等差數(shù)列的通項(xiàng)公式,即可求出首項(xiàng),再利用等差數(shù)列求和公式即可得到答案.【詳解】已知等差數(shù)列的通項(xiàng)公式為,..故答案為:.14、【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點(diǎn)為,設(shè)點(diǎn),則,即,且,于是得,因,則當(dāng)時,,所以的最大值為.故答案為:15、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長的求法;16、##2.4【解析】過作于,可證即為點(diǎn)到平面的距離.【詳解】過作于,∵是長方體,∴平面平面,又∵平面平面,∴平面,設(shè)點(diǎn)到平面的距離為,∵∥平面,∴根據(jù)等面積法得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)?,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.18、詳見解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時,設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯位相減法求和即可;選②③時,設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯位相減法求和即可;選①③時,設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)椋?,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時,設(shè)數(shù)列公差為,因?yàn)?,所以,因?yàn)?,所以時,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時,設(shè)數(shù)列公差為,因?yàn)?,所以,即,因?yàn)?,,成等比?shù)列,所以,即,化簡得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時,設(shè)數(shù)列公差為,因?yàn)?,所以時,,所以.又因?yàn)椋?,成等比?shù)列,所以,即,化簡得,因?yàn)?,所以,從而無解,所以等差數(shù)列不存在,故不合題意.【點(diǎn)睛】本題考查了等差(比)數(shù)列的通項(xiàng)公式,考查了錯位相減法在數(shù)列求和中的應(yīng)用,考查了轉(zhuǎn)化能力與方程思想,屬于中檔題.19、(1);(2);(3).【解析】(1)由題意中離心率和長軸長可求出,即可求出橢圓方程.(2)設(shè)出與的坐標(biāo)即直線的方程,把直線與橢圓方程進(jìn)行聯(lián)立寫出韋達(dá)定理,由題意以為直徑圓經(jīng)過原點(diǎn)可得,化簡即可求出直線的斜率.(3)由題意可得圓的方程,設(shè),由和直線的方程化簡,即可得到答案.【小問1詳解】,,橢圓C的方程為.【小問2詳解】由題意知直線的斜率存在且不為0,設(shè)直線的方程為.設(shè).把直線的方程與橢圓的方程進(jìn)行聯(lián)立得:..由以為直徑圓經(jīng)過原點(diǎn)知,..經(jīng)檢驗(yàn),滿足,所以.【小問3詳解】由題意可得圓的方程為,設(shè),由得.①.當(dāng)時,,直線的方程為.直線過橢圓的右焦點(diǎn).當(dāng)時,直線的斜率為且過,②把①代入②中得.故直線過橢圓的右焦點(diǎn).綜上所述,直線過橢圓的右焦點(diǎn).20、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問1詳解】證明:設(shè),因?yàn)槭堑冗吶切?,且,所以是的中點(diǎn),則.又,所以,所以,即.又平面平面,所以.又,所以平面.因?yàn)槠矫?,所以平面平?【小問2詳解】解:因?yàn)?,所?在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點(diǎn)到平面的距離為,因?yàn)?,所以,解得,即點(diǎn)到平面的距離為.21、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進(jìn)而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標(biāo)系,分別求得平面的一個法向量和平面的一個法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因?yàn)?,,,所以,,又,所以是等腰直角三角形,即,所?由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論