版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題L集合與簡(jiǎn)單邏輯用語(yǔ)
思維導(dǎo)圖
知識(shí)梳理
知識(shí)點(diǎn)一集合與元素
1.集合元素的三個(gè)特性:確定性、互異性、無(wú)序性;
2、元素與集合的關(guān)系:屬于或不屬于,用符號(hào)£或任表示
3、集合的表示法:列舉法、描述法、圖示法
4、常見(jiàn)數(shù)集的記法與關(guān)系圖
集合自然數(shù)集正整數(shù)集整數(shù)集有理數(shù)集實(shí)數(shù)集
符號(hào)NM(或N+)ZQR
NQN
知識(shí)點(diǎn)二集合間的基本關(guān)系
\表示
文字語(yǔ)言符號(hào)語(yǔ)言圖形語(yǔ)言
關(guān)系
?
集合力的所有元素都是集合笈的元素(X£人則Aq8或
子集
xeB)B^A
基或
本
真子集合A是集合〃的子集,且集合〃中至少有一個(gè)元瘴8或8?
關(guān)
集素不屬于力
系MA
相等集合力,〃的元素完全相同A=B
空集不含任何元素的集合.空集是任何集合力的子集0
若有限集A中有n個(gè)元素,則A的子集有2n個(gè),真子集有20一1個(gè),非空真子集的個(gè)數(shù)有*一2個(gè)
知識(shí)點(diǎn)三集合的基本運(yùn)算
1、集合交并補(bǔ)運(yùn)算的表示
集合的并集集合的交集集合的補(bǔ)集
圖形語(yǔ)言00
符號(hào)語(yǔ)言ALB=A,取w8}AB=|x|xeA,HxeCM={x|x£〃,且x任力}
2、集合運(yùn)算中的常用二級(jí)結(jié)論
(1)并集的性質(zhì):JU0=J;AUA=A;AUB=BUA;力U6=/l0隹4
(2)交集的性質(zhì):7100=0;AQA=A;m/ABCA;.怛A
(3)補(bǔ)集的性質(zhì):AU(CuA)=U;AD(CuA)=0.Cu(CuA)=A;
Cu(AUB)=(CuA)n(Cu8);Cu(AAB)=(CuA)U(CuB).
知識(shí)點(diǎn)四充分條件與必要條件
1、充分條件、必要條件與充要條件的概念
若P=q,則P是q的充分條件,q是P的必要條件
P是q的充分不必要條件pnq且q分p
P是q的必要不充分條件p40且q〉p
P是q的充要條件poq
P是q的既不充分也不必要條件p今q且q#p
2、從集合的角度:
若條件P,q以集合的形式出現(xiàn),即A={xp(x)},B={x|q(x)},
若AGB,則p是q的充分條件,若A&B,則p是q的充分不必要條件;
若A2B,則p是q的必要條件;若A拈弓,則p是q的必要不充分條件;
若4=8,則p是q的充要條件;
若ACB且ADB,則p是q的既不充分也不必要條件.
知識(shí)點(diǎn)五全稱量詞與存在量詞
1、全稱量詞與存在量詞、全稱量詞命題與存在量詞命題
全稱量詞存在量詞
量詞所有的,任意一個(gè)至少有一個(gè),存在一個(gè)
符號(hào)V3
命題含有全稱量詞的命題是全稱量詞命題含有存在量詞的命題是存在量詞命題
“對(duì)M中任意一個(gè)x,p(x)成立“,可用“存在M中的元素x,p(x)成立”可用符
命題形式
符號(hào)簡(jiǎn)記為“VXWM,p(x)”號(hào)簡(jiǎn)記為匕xWM,p(x).”
2、含有一個(gè)量詞的命題的否定」
P結(jié)論
VxGM,p(x)3xGM,~T)(x)全稱量詞命題的否定是存在量詞命題
3xEM,p(x)VxEM,"p(x)存在量詞命題的否定是全稱量詞命題
?重要結(jié)論:
命題P與、真假性相反;
全稱量詞命題可轉(zhuǎn)化為恒成立命題,存在量詞命題可轉(zhuǎn)化為存在性問(wèn)題
滿分技巧
一、集合中常見(jiàn)的參數(shù)求法
1、已知一個(gè)元素屬于集合,求集合中所含的參數(shù)值.
(I)確定性的運(yùn)用:利用集合中元素的確定性解出參數(shù)的所有可能值:
(2)互異性的運(yùn)用:根據(jù)集合中元素的互異性對(duì)集合中元素進(jìn)行檢驗(yàn).
2、利用兩個(gè)集合之間的關(guān)系確定參數(shù)的取值范圍
第一步:弄清兩個(gè)集合之間的關(guān)系,誰(shuí)是誰(shuí)的子集;
第二步:看集合中是否含有參數(shù),若4=8,
且A中含參數(shù)應(yīng)考慮參數(shù)使該集合為,空集的情形;
第三步:將集合間的包含關(guān)系轉(zhuǎn)化為方程(組)或不等式(組),求出相關(guān)的參數(shù)的值或取值范圍.
常采用數(shù)形結(jié)合的思想,借助數(shù)軸解答.
3、根據(jù)集合運(yùn)算的結(jié)果確定參數(shù)的取值范圍
法一:根據(jù)集合運(yùn)算結(jié)果確定集合對(duì)應(yīng)區(qū)間的端點(diǎn)值之間的大小關(guān)系,確定參數(shù)的取值范圍.
法二:(1)化簡(jiǎn)所給集合;(2)用數(shù)軸表示所給集合;
(3)根據(jù)集合端點(diǎn)間關(guān)系列出不等式(組):(4)解不等式(組);(5)檢驗(yàn).
【注意】(I)確定不等式解集的端點(diǎn)之間的大小關(guān)系時(shí),需檢驗(yàn)?zāi)芊袢 ?”;
(2)千萬(wàn)不要忘記考慮空集。
二、充分必要條件與集合的關(guān)系
充分必要條件判斷精髓:
小集合推出大集合,小集合是大集合的充分不必要條件,大集合是小集合的必要不充分條件;
若兩個(gè)集合范圍一樣,就是充要條件的關(guān)系;
三、全稱量詞命題與存在量詞命題的真假判斷
I、判斷全稱量詞命題真假:
若為真命題,必須對(duì)限定的集合M中的每一個(gè)元素X,驗(yàn)證〃(幻成立;
若為假命題,只要能舉出集合M中的一個(gè)x=x。,使〃(即)不成立即可:
2、判斷存在量詞命題真假:
只要在限定集合M中,至少能找到一個(gè)x=x0,使〃(%)成立,
則這個(gè)命題為真,否則為假,
考點(diǎn)突破
考點(diǎn)一集合
【例1?1】若集合A={x|lnx>l,xeN.},集合8={x|Yf7<0},則4cB的子集個(gè)數(shù)為()
A.5B.6C.16D.32
【答案】C【解析】由lnx>l得工〉e,所以A=,解不等式“2_6.1—7<0得用={工|—1<丫<7},
所以從。3={3,4,5,6),所以4cB的子集個(gè)數(shù)為24=16.故選:C
【例1?2]已知集合A={a-2,/+4〃』2},且-3wA,則a等于()
A.-3或—1B.—1C.3D.—3
【答案】D【解析】因?yàn)橐?eA,當(dāng).一2二-3,得。=一1,則4={-3,12},不合題意,故舍去.
當(dāng)/+44=一3,故。二T(舍去)或〃=一3,此時(shí)A={-5,-3,12},滿足.故選:D
【例1?3】設(shè)集合4二{4%+1)*-3)40},3={9—5vxva},若則實(shí)數(shù)。的取值范圍是()
A.[3,4]B.IS”)C.(-oo,4]D.(3,4)
【答案】B【解析】由已知可得,集合A={X—lKxK3},B={j(\a-5<x<a},因?yàn)?=8,所以
(注意端點(diǎn)值是否能取到),解得3<。<4,故選:D.
【例1-4】已知集合4=[廠一2工-3<0},5={止1。<一〃",若AB=At則實(shí)數(shù)機(jī)的取值范圍為()
A.(—3,+oo)B.(—oo,-3]C.[3,-He)D.(—1,3]
【答案】B【解析】解不等式/-2%-3<0,得—,于是4=(-1,3),WB=(-l-m),
因?yàn)锳08=A,則A=8,因此T7后3,解得機(jī)工一3,
所以實(shí)數(shù)/〃的取值范圍為(-co,-3].故選:B
【例1?5]集合1=卜|),=暄(44)},集合8=卜|),=&-2..3卜全集U=R,則⑹4)18為()
A.[-2,2]B.[-2,-HO)C.{2}D.(-?>,2]O[3,-HX>)
【答案】B
【解析】對(duì)于集合人,由/一4>0=、>2或xv-2,所以A=(F,-2)U(2,+<X>),。4=[-2,2],
y=>jx2-2x-3=^(X-1)2-4>0,z.B={y|y>0},故@A)U8=[-2,4w).故選:B
【變式1-1】設(shè)集合A={OJ/},若a—MA,則實(shí)數(shù)〃=.
【答案】2【解析】當(dāng)。-1=0時(shí),a=l,此時(shí)A={OJ1},不符合條件;當(dāng)a—l=l時(shí),a=2,此時(shí)A={0,l,4},
符合條件;若a-l=6,即"一。+]=0,無(wú)實(shí)根,不符合條件.所以。=2.故答案為:2.
【變式1?2](多選題)已知集合B={x|ar+l=0},且BG4,則實(shí)數(shù)。的取值可能為()
A.-3B.-2C.0D.3
【答案】BCD【解析】出題知B={x\ax-\-1=()},A=?.所以6=?,{一;1,{"0.
當(dāng)8=[一時(shí),此種情況不可能,所以舍去;當(dāng)8={-:}時(shí),
--6Z+1=0,解得4=3;
JzJ33
當(dāng)月={占時(shí),"+1=0,解得〃=一2;當(dāng)8=0時(shí),4=0.綜上可得實(shí)數(shù)〃的可能取值為3,0,-2.故選:
22
【變式1?3】設(shè)集合4={dx<2或xN4}I={x|aJKa+1},若(\人)。4=0,則。的取值范圍是()
A.或a>4B.a<1或“24C.a<1D.a>4
【答案】B【解析】由集合A={Rxv2或xN4},得%4={R2MXV4},
又集合8={daWxWa-1}且(、A),B=0,則〃+1<2或a24,即av1或.故選:B.
【變式1-4】已知集合人={(乂),)卜=科,3={(乂刈),=4,,則AB=()
A.{-2,0,2}B.{(0,0)}C.{(0,0),(2,8)}D.{(—2,-8),(0,0),(2,8)}
【答案】D
[解析]解方程組{;二j可得、;:[或、;];或{;[;乂因?yàn)锳={(K,),)"=x3},G={(4,y)|y=4x},
則A3={(_2,—8),(0,0),(2,8)}.故選:D.
考點(diǎn)二常用邏輯用語(yǔ)
【例2?1]“/=。2”是“片+力2=29”的()
A.充分不必要條件R.必要不充分條件C.充分必要條件D.既不充分又不必要條件
【答案】B【解析】由/=/,則4=坊,當(dāng)4=一〃工。時(shí)c『+〃=2時(shí)不成立,充分性不成立;
由/+〃2=2時(shí),貝心一。)2=。,即4=力,顯然/=〃成立,必要性成立;所以/=6是/+〃=2時(shí)的必
要不充分條件.故選:B
【例2.2]已知集合4=[-2,5],B=W+1,2"?T.若“xe8”是,知eA”的充分不必要條件,則巧的取值
范羽是()
A.(2,3]B.(-oo,3]C.0D.[2,3]
///+1<2m-1
【答案】A【解析】若是。eA”的充分不必要條件,則8A,所以“〃+摩-2,解得2<〃區(qū)3,
2m-1<5
即〃?的取值范闈是(2,3].故選:A.
2
【例2?3]使一并成立的一個(gè)充分不必要條件是()
x
A.l<x<3B.x<2C.0<x<2D.0<x<2
22
【答案】C【解析】由上之1得0<x*2,所以“1<工<3、,是"4之「的即不充分也不必要條件,故A錯(cuò)誤;
xx
?2
“0vx<2”是"±21”的充分不必要條件,故B正確;“xv2”是“*21”的即不充分也不必要條件,故C錯(cuò)
XX
2
誤;"0<xK2”是“一21”的充要條件,故D錯(cuò)誤.故選:C.
x
【例2?4】命題“WX>0,/+1>1.”的否定是()
A.Hr>0,?1+1<1.B.>0,a'+1<1.
C.3.r<0,aT+l<I.D.Vx<(),優(yōu)+1<I.
【答案】A【解析】根據(jù)全稱命題的否定,可得二>O,/+1KL故選:A.
【變式2?1】己知"R,則“a=—1”是“/_]+(a—2)i為純虛數(shù)”的()
A,充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
【答案】A
2?Q
【解析】當(dāng)+2)i為純虛數(shù)時(shí),有"",則。=±1,故是“—l+(a_2)i為純虛數(shù)”
0-2*0
的充分不必要條件.故選:A.
【變式2-2】己知“〃:(.?,〃)2>3(廠機(jī))''是"夕"2+31-4?)”成立的必要不充分條件,則實(shí)數(shù)〃,的取值范
圍為()
A.(-00,-7)J(l,+oo)B.(^x>,-7]U[l,+oo)C.(-7,1)D.[-7,1]
【答案】A【解析】由(x—⑼2>3(x-/n)得:xvm或%>3+6,所以〃:)<〃?或x>3+〃z;
由/+3工一4工0得:-4<x<l,所以4:~4WXG.因?yàn)椤ㄊ莙的必要不充分條件,即夕=>〃巨〃4夕,
所以{x|-4Wx?l}是或工>3+/〃}的真子集,所以〃/>1或〃?+3<-4,解得/>1或加<一7.
【變式2?3】若〃:二K0,則尸成立的一個(gè)必要不充分條件是()
x+1
A.-l<x<2B.|x|>lC.N>2D.2<X<5
【答案】B【解析]〃:—=$0,Kp(2-x)(x+l)<()fLx*-l,解得x<—l或x22,所以〃:x<—1或xN2,
x+1
對(duì)于A,是〃的既不充分也不必要條件;對(duì)于B,國(guó)>1即或工〉1,是〃的必要不充分條
件;對(duì)于C,兇>2即xv-2或丸>2,是〃的充分不必要條件;對(duì)于D,2<無(wú)45是〃的充分不必要條件;
故選:B.
【變式2-4]若命題〃:Wx之(),e"21或sinxv1,則T)為.
【答案】*Z0e〈l且sin、2l
課后鞏固
1.(2025年全國(guó)?高考I卷2)設(shè)全集U={x|x是小于9的正整數(shù)},集合4={1,3,5},則中元素個(gè)數(shù)為()
A.OB.3C.5D.8
【答案】C
2.(2025年全國(guó)?高考II卷3)已知集合4={7,0,1,2,8},6=卜|丁=1},則4[3=()
A.{0,1,2}B.{128}
C.{2,8}D,{0,1}
【答案】D
3.12025年全國(guó)?天津1)已知集合0={123,4,5},'={1,3},'={2,3,5},則4,(“。3)=()
A.{1,2,3,4}B.{2,3,4}C.{2,4}D.{4}
【答案】D
4J2025年全國(guó)?天津2)設(shè)xcR,則“冗=0”是“sin2x=0”的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
【答案】A
5.(2024年全國(guó)?高考I卷)已知集合4={d-5vJ<5},K={T-l,0,2,3},則AC|8=()
A.{-1,0}B.[2,3}C.{-3,-1,0}D.{-1,0,2)
【答案】A【詳解】因?yàn)锳=1|一而<x<為},8={-3,T0,2,3},且注意到1<痣<2,從而A:8={-1,0}.
6.(2024?全國(guó)?高考甲卷文)若集合人={1,2,3,4,5,9},B={x\x+ieA\t則AB=()
A.{1,3,4}B.{2,3,4}C.{1,2,3,4}D.{0,1,2,3,4,9}
【答案】C【詳解】依題意得,對(duì)于集合3中的元素%,滿足"+1=123,4,5,9,則%可能的取值為0,1,2,3,4,8,
即8={0,1,2,3,4,8},于是Ac5={l,2,3,4}.
7.(2024全國(guó).高?考甲卷理)已知集合4—11,2,3,4,5,9},8-卜卜GGA},則Q/AC")=()
A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}
【答案】D【詳解】因?yàn)椋?{1,234,5,9},8=卜|五?4,所以8={1,4,9,16,25⑻},
則A8={1,4,9},?3)={2,3,5}故選:D
8.(2024?北京?高考真題)已知集合M={x[-3<x<I},N={x\-\<x<4],則M=N=()
A.{x|-l<x<1}B.{x|x>-3)
C.{x|-3<x<4}D.{x|x<4}
【答案】C【詳解】由題意得MuN="|-3vxv4}.故選:C.
9.(2024?天津?高考真題)設(shè)a,bwR,則“/=/"是"3"=3〃”的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
【答案】C【詳解】根據(jù)立方的性質(zhì)和指數(shù)函數(shù)的性質(zhì),/=/和3“=3〃都當(dāng)且僅當(dāng)。=力,所以二者互為
充要條件.
10.(2023年全國(guó)甲卷理科)設(shè)全集U=Z,集合M={NX=3A+1/WZ},N={X|X=3Z+2,A£Z},
金(MuN)=()
A.{x\x=3k,keZ}B.{x|x=3k-\,kEZ)
C.{x|x=3k-2,keZ]D.0
【答案】A解析:因?yàn)檎麛?shù)集Z={x|x=3匕AwZ}{x|x=3&+l,&wZ}{x|x=3攵+2,AwZ},
U=Z,所以,0,(A/UN)={x|x=3Z?£Z}.故選:A.
11.(2023年新課標(biāo)全國(guó)II卷)設(shè)集合A={0,-@,8={1,。-2,加一2},若A=則。=().
A.2B.1C.-D.-1
3
【答案】B
12.(2023年新課標(biāo)全國(guó)I卷)已知集合加={-2,-1,0,1,2},N=一工一62。},則McN=()
A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.2
【答案】C
13.(2023年全國(guó)乙卷理科)設(shè)集合U=R,集合M={x|xvl},N={耳―1<x<2},則{^工之2}二()
A.d(MUN)B.N[JQ;M
C.Q,(MQN)D.MuQ.N
【答案】A
c
14.(2023年新課標(biāo)全國(guó)I卷)記S”為數(shù)列{4}的前〃項(xiàng)和,設(shè)甲:{4}為等差數(shù)列;乙:{:}為等差數(shù)
列,則()
A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件
C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件
【答案】C
15.(2022?全國(guó)?高考真題)已知集合八={一11,2,4},8=卜卜-1歸1},則Af]〃=()
A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}
【詳解】4={X|0KXK2},故AB={1,2},故選:B.
16.(2022?全國(guó)?高考真題)若集合M={x|五<4},N={x|3x21},則N=()
A.1x|0<x<2}B.C.{x|3<x<161D.*x1<x<16■
【詳解】"={xl0Sx<16},N={x|x2:),故M[N=<16一故選:D
17.(2022?全國(guó)?高考真題(理))設(shè)全集U={1,2,3,45},集合M滿足={1,3},則()
A.2wMB.3GMC.4任MD.5任M
【詳解】由題知M={2,4,5},對(duì)比選項(xiàng)知,A正確,BCD錯(cuò)誤故選:A
18.(2022?全國(guó)?高考真題(理))設(shè)全集U={-2,—1,0,123},集合A={-1,2},8=斌f-4x+3=。},則
Q/W8)=()
A.{1,3}B.{0,3}C.{-2,1}D.{-2,0}
由地意,?={X|X2-4X+3=0}={I,3},所以Au8={T123},所以6(A<JB)={-2,0}.
故選:D.
19.(2022?上海?高考真題)已知4=(-1,2),1=(1,3),則
【詳解】由A=(—1,2),8=(1,3)根據(jù)集合交集的定義,Ac8=(l,2).故答案為:(1,2)
20.(2021?湖南?高考真題)已知集合十={1,3,5},4={1,2,3,4},且A(B=()
A.{1,3}B.{1,3,5}
C.{123,4}D.{123,4,5}
【詳解】因?yàn)榧先?{1,3,5},5={1,2,3,4}所以AB={1,3},故選:A.
21.(2021?江蘇?高考真題)已知集合加={1,3},N={1-?3},若MJN={I,2,3},則。的值是()
A.-2B.-1C.0D.1
【詳解】因?yàn)镸UN={1.2.3},若1—〃=1n〃=0,經(jīng)驗(yàn)證不滿足題意:若1—〃=2n〃=—I,經(jīng)驗(yàn)證滿足
題意.所以。=-1.故選:B.
22.(2021?天津?高考真題)設(shè)集合4={-1,0,小8={1,3,5}<=卜).2.4},則(AcB)uC=()
A.{0}B.{03,3,5}C.{0,1,24}D.{62,3,4}
【詳解】人={-1,01},6={l.3,5}C={0,2,4},.?.Ac8={l},.?.(Ac3)uC={0,l,2,4}.故選:C.
23.(2021?天津?高考真題)已知“GR,則“a>6”是“片>36”的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
【詳解】由題意,若。>6,則">36,故充分性成立;若/>36,則。>6或推不出a>6,故必
要性不成立;所以>6”是“4〉36”的充分不必要條件.故選:A.
24.(2021?全國(guó)?高考真題)設(shè)集合口=全2,3,4,5,6},4=設(shè)3,6},8={2,3,4),則AP(電8)=()
A.{3}B.{1,6}C.{5,6}D.{1,3}
【詳解】由題設(shè)可得用5={1,5,6},故Ac@8)={l,6},故選:B.
25.(2021?北京?高考真題)已知集合4={x|-lvxvl},B={x\0<x<2}t則-8=()
A.{x|-l<x<2}B.{X|-1<X<2}
C.{x|0<x<l}D.{x|0<x<2}
【詳解】由題意可得:AU3=3-l<xW2}.故選:B.
26.(2021?浙江?高考真
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京北京市體育局所屬事業(yè)單位招聘100人筆試歷年參考題庫(kù)附帶答案詳解
- 中央中共中央對(duì)外聯(lián)絡(luò)部事業(yè)單位2025年招聘5人筆試歷年參考題庫(kù)附帶答案詳解
- 2026年及未來(lái)5年中國(guó)軌道交通裝備行業(yè)市場(chǎng)調(diào)研分析及投資戰(zhàn)略咨詢報(bào)告
- 2025年河北邢臺(tái)市中心血站第二批公開(kāi)招聘編外工作人員1名筆試備考試題及答案解析
- 2026安徽淮南市壽縣楚通公共交通有限公司就業(yè)見(jiàn)習(xí)招聘2人筆試參考題庫(kù)及答案解析
- 2026興業(yè)銀行南昌分行招聘10人筆試備考題庫(kù)及答案解析
- 2026上海銀行分支行社會(huì)招聘筆試模擬試題及答案解析
- 2026安徽安慶市人力資源服務(wù)有限公司招聘勞務(wù)派遣員工4人筆試備考試題及答案解析
- 2025年家庭養(yǎng)老支持政策優(yōu)化報(bào)告
- 2026貴州貴陽(yáng)市城鄉(xiāng)建設(shè)學(xué)校招聘兼職教師筆試模擬試題及答案解析
- 2025年互聯(lián)網(wǎng)營(yíng)銷游戲化營(yíng)銷案例解析可行性研究報(bào)告
- DB31∕T 1048-2020“上海品牌”認(rèn)證通 用要求
- 意識(shí)障礙的判斷及護(hù)理
- 儲(chǔ)能電站安全管理與操作規(guī)程
- 病理性賭博的識(shí)別和干預(yù)
- 2025年宿遷市泗陽(yáng)縣保安員招聘考試題庫(kù)附答案解析
- 校園文化建設(shè)協(xié)議合同
- 2025年廣東省中考物理試卷及答案
- 2026屆高三語(yǔ)文聯(lián)考作文題目導(dǎo)寫(xiě)分析及范文:當(dāng)語(yǔ)言與真實(shí)經(jīng)驗(yàn)脫鉤
- 皮革項(xiàng)目商業(yè)計(jì)劃書(shū)
- 公路護(hù)欄波型梁施工方案
評(píng)論
0/150
提交評(píng)論