上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題含解析_第1頁
上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題含解析_第2頁
上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題含解析_第3頁
上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題含解析_第4頁
上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市師范大學附屬中學2026屆高一上數(shù)學期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一半徑為2m的水輪,水輪圓心O距離水面1m;已知水輪按逆時針做勻速轉動,每3秒轉一圈,且當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.如圖所示,建立直角坐標系,將點P距離水面的高度h(單位:m)表示為時間t(單位:s)的函數(shù),記,則()A.0 B.1C.3 D.42.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.3.在空間坐標系中,點關于軸的對稱點為()A. B.C. D.4.已知函數(shù),且f(5a﹣2)>﹣f(a﹣2),則a的取值范圍是()A.(0,+∞) B.(﹣∞,0)C. D.5.下列關于向量的敘述中正確的是()A.單位向量都相等B.若,,則C.已知非零向量,,若,則D.若,且,則6.設若,,,則()A. B.C. D.7.設,,,則,,的大小關系為()A. B.C. D.8.設集合,,則集合A. B.C. D.9.若,,則等于()A. B.C. D.10.若為所在平面內一點,,則形狀是A.等腰三角形 B.直角三角形C.正三角形 D.以上答案均錯二、填空題:本大題共6小題,每小題5分,共30分。11.兩條平行直線與的距離是__________12.設函數(shù),若函數(shù)在上的最大值為M,最小值為m,則______13.兩平行線與的距離是__________14.已知函數(shù)(且)只有一個零點,則實數(shù)的取值范圍為______15.已知函數(shù),若正實數(shù),滿足,則的最小值是____________16.已知,,則_____;_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象與的圖象關于軸對稱,且的圖象過點.(1)若成立,求的取值范圍;(2)若對于任意,不等式恒成立,求實數(shù)的取值范圍.18.已知函數(shù)是定義在上的奇函數(shù).(1)若,且,求函數(shù)的解析式;(2)若函數(shù)在上是增函數(shù),且,求實數(shù)的取值范圍.19.已知函數(shù).(1)求的值;你能發(fā)現(xiàn)與有什么關系?寫出你的發(fā)現(xiàn)并加以證明:(2)試判斷在區(qū)間上的單調性,并用單調性的定義證明.20.已知二次函數(shù)的圖象與軸、軸共有三個交點.(1)求經過這三個交點的圓的標準方程;(2)當直線與圓相切時,求實數(shù)的值;(3)若直線與圓交于兩點,且,求此時實數(shù)的值.21.為貫徹黨中央、國務院關于“十三五”節(jié)能減排的決策部署,2022年某企業(yè)計劃引進新能源汽車生產設備.通過市場分析,全年需投人固定成本2500萬元,生產百輛需另投人成本萬元.由于起步階段生產能力有限,不超過120,且經市場調研,該企業(yè)決定每輛車售價為8萬元,且全年內生產的汽車當年能全部銷售完.(1)求2022年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式(利潤銷售額-成本);(2)2022年產量多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)題意設h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,寫出函數(shù)解析式,計算f(t)+f(t+1)+f(t+2)的值【詳解】根據(jù)題意,設h=f(t)=Asin(ωt+φ)+k,(φ<0),則A=2,k=1,因為T=3,所以ω,所以h=2sin(t+φ)+1,又因為t=0時,h=0,所以0=2sinφ+1,所以sinφ,又因為φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故選:C2、A【解析】由題意知原命題為假命題,故命題的否定為真命題,再利用,即可得到答案.【詳解】由題意可得“”是真命題,故或.故選:A.3、C【解析】兩點關于軸對稱,則縱坐標相同,橫坐標互為相反數(shù),豎坐標互為相反數(shù),由此可直接得出結果.【詳解】解:兩點關于軸對稱,則縱坐標相同,橫坐標互為相反數(shù),豎坐標互為相反數(shù),所以點關于軸的對稱點的坐標是.故選:C.4、D【解析】由定義可求函數(shù)的奇偶性,進而將所求不等式轉化為f(5a﹣2)>f(﹣a+2),結合函數(shù)的單調性可得關于a的不等式,從而可求出a的取值范圍.【詳解】解:根據(jù)題意,函數(shù),其定義域為R,又由f(﹣x)f(x),f(x)為奇函數(shù),又,函數(shù)y=9x+1為增函數(shù),則f(x)在R上單調遞增;f(5a﹣2)>﹣f(a﹣2)?f(5a﹣2)>f(﹣a+2)?5a﹣2>﹣a+2,解可得,故選:D.【點睛】關鍵點睛:本題的關鍵是由奇偶性轉化已知不等式,再求出函數(shù)單調性求出關于a的不等式.5、C【解析】A選項:單位向量方向不一定相同,故A錯誤;B選項:當時,與不一定共線,故B錯誤;C選項:兩邊平方可得,故C正確;D選項:舉特殊向量可知D錯誤.【詳解】A選項:因為單位向量既有大小又有方向,但是單位向量方向不一定相同,故A錯誤;B選項:當時,,,但與不一定共線,故B錯誤;C選項:對兩邊平方得,,所以,故C正確;D選項:比如:,,,所以,,所以,但,故D錯誤.故選:C.6、A【解析】將分別與比較大小,即可判斷得三者的大小關系.【詳解】因為,,,所以可得的大小關系為.故選:A7、D【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,再結合0,1兩個中間量即可求得答案.【詳解】因為,,,所以.故選:D.8、D【解析】并集由兩個集合所有元素組成,排除重復的元素,故選.9、D【解析】根據(jù)三角函數(shù)的誘導公式即可化簡求值.【詳解】∵,,,,,.故選:D.10、A【解析】根據(jù)向量的減法運算可化簡已知等式為,從而得到三角形的中線和底邊垂直,從而得到三角形形狀.詳解】三角形的中線和底邊垂直是等腰三角形本題正確選項:【點睛】本題考查求解三角形形狀的問題,關鍵是能夠通過向量的線性運算得到數(shù)量積關系,根據(jù)數(shù)量積為零求得垂直關系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直線與平行,,得,直線,化為,兩平行線距離為,故答案為.12、2【解析】令,證得為奇函數(shù),從而可得在的最大值和最小值之和為0,進而可求出結果.【詳解】設,定義域為,則,所以,即,所以為奇函數(shù),所以在的最大值和最小值之和為0,令,則因為,所以函數(shù)的最大值為,最小值為,則,∴故答案為:2.13、【解析】直接根據(jù)兩平行線間的距離公式得到平行線與的距離為:故答案為.14、或或【解析】∵函數(shù)(且)只有一個零點,∴∴當時,方程有唯一根2,適合題意當時,或顯然符合題意的零點∴當時,當時,,即綜上:實數(shù)的取值范圍為或或故答案為或或點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解15、9【解析】根據(jù)指數(shù)的運算法則,可求得,根據(jù)基本不等式中“1”的代換,化簡計算,即可得答案.【詳解】由題意得,所以,所以,當且僅當,即時取等號,所以的最小值是9故答案為:916、①.②.【解析】利用指數(shù)式與對數(shù)的互化以及對數(shù)的運算性質化簡可得結果.【詳解】因為,則,故.故答案為:;2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】利用已知條件得到的值,進而得到的解析式,再利用函數(shù)的圖象關于軸對稱,可得的解析式;(1)先利用對數(shù)函數(shù)的單調性,列出不等式組求解即可;(2)對于任意恒成立等價于,令,,利用二次函數(shù)求解即可.【詳解】,,,;由已知得,即.(1)在上單調遞減,,解得,的取值范圍為.(2),對于任意恒成立等價于,,,令,,則,,當,即,即時,.【點睛】結論點睛:本題考查不等式的恒成立與有解問題,可按如下規(guī)則轉化:一般地,已知函數(shù),(1)若,,總有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,則的值域是值域的子集18、(1)(2)【解析】【試題分析】(1)利用可求得的值,利用,可求得的值.(2)利用奇函數(shù)的性質,將圓不等式轉化為然后利用函數(shù)的單調性列不等式來求解.【試題解析】(Ⅰ)是定義在上的奇函數(shù),經檢驗成立(Ⅱ)是定義在上的奇函數(shù)且即函數(shù)在上是增函數(shù)的取值范圍是19、(1),,與的關系:,證明見解析(2)在上單調遞減,證明見解析【解析】(1)通過函數(shù)解析式計算出,通過計算證明.(2)通過來證得在區(qū)間上單調遞減.【小問1詳解】,.證明:..【小問2詳解】在區(qū)間上遞減.證明如下:且.在上單調遞減.20、(1);(2)或;(3)【解析】(1)先求出二次函數(shù)的圖象與坐標軸的三個交點的坐標,然后根據(jù)待定系數(shù)法求解可得圓的標準方程;(2)根據(jù)圓心到直線的距離等于半徑可得實數(shù)的值;(3)結合弦長公式可得所求實數(shù)的值【詳解】(1)在中,令,可得;令,可得或所以三個交點分別為,,,設圓的方程為,將三個點的坐標代入上式得,解得,所以圓的方程為,化為標準方程為:(2)由(1)知圓心,因為直線與圓相切,所以,解得或,所以實數(shù)的值為或(3)由題意得圓心到直線的距離,又,所以,則,解得所以實數(shù)的值為或【點睛】(1)求圓的方程時常用的方法有兩種:一是幾何法,即求出圓的圓心和半徑即可得到圓的方程;二是用待定系數(shù)法,即通過代數(shù)法求出圓的方程(2)解決圓的有關問題時,要注意圓的幾何性質的應用,合理利用圓的有關性質進行求解,可以簡化運算、提高解題的效率21、(1)(2)2022年產量為100百輛時,企業(yè)所獲利潤最大,最大利潤為1600萬元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論