2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆吉林省四平市數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題為“,”,則為()A., B.,C., D.,2.已知a,b為不相等實數(shù),記,則M與N的大小關(guān)系為()A. B.C. D.不確定3.雙曲線的焦點到漸近線的距離為()A.1 B.2C. D.4.甲、乙兩名同學(xué)同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館5.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.26.,則與分別為()A.與 B.與C.與0 D.0與7.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.8.橢圓的兩焦點之間的距離為A. B.C. D.9.雙曲線的光學(xué)性質(zhì)如下:如圖1,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學(xué)性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.10.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解11.直線與直線交于點Q,m是實數(shù),O為坐標(biāo)原點,則的最大值是()A.2 B.C. D.412.函數(shù)的極大值點為()A. B.C. D.不存在二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________14.已知、雙曲線的左、右焦點,A、B為雙曲線上關(guān)于原點對稱的兩點,且滿足,,則雙曲線的離心率為___________.15.已知數(shù)列的前項和為,且,若點在直線上,則______;______.16.函數(shù)在上的最大值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設(shè)點M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當(dāng),且滿足時,求面積的取值范圍.18.(12分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項,且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.19.(12分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個人要進行一場五局三勝的比賽,勝者贏得2700元獎金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因為其他要事而終止比賽,間,怎么分獎金才公平?20.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.21.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設(shè),若不等式對一切恒成立,求實數(shù)取值范圍22.(10分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B2、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因為,又,所以,即故選:A3、A【解析】分別求出雙曲線的焦點坐標(biāo)和漸近線方程,利用點到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點坐標(biāo)為漸近線方程為:∴雙曲線的焦點到漸近線的距離故選:A4、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當(dāng)且僅當(dāng)時等號成立,而,故,乙花時間多,甲先到體育館故選:A5、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.6、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C7、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A8、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標(biāo)為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質(zhì)點評:解決的關(guān)鍵是將方程變?yōu)闃?biāo)準(zhǔn)式,然后結(jié)合性質(zhì)得到結(jié)論,屬于基礎(chǔ)題9、D【解析】設(shè),根據(jù)題意可得,由雙曲線定義得、,進而求出(用表示),然后在中,應(yīng)用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D10、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數(shù),故C正確,D錯誤.故選:C.11、B【解析】求出兩直線的交點坐標(biāo),結(jié)合兩點間的距離公式得到,進而可以求出結(jié)果.【詳解】因為與的交點坐標(biāo)為所以,當(dāng)時,,所以的最大值是,故選:B.12、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號可得,或者根據(jù)對勾函數(shù)圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當(dāng)時,,時,,所以時有極小值.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.##2.4【解析】利用直線與平行,結(jié)合切線的性質(zhì)求出切線的方程,即可確定定點坐標(biāo),再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設(shè)直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.14、【解析】可得四邊形為矩形,運用三角函數(shù)的定義可得,,由雙曲線的定義和矩形的性質(zhì),可得,由離心率公式求解即可.【詳解】、為雙曲線的左、右焦點,可得四邊形為矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案為:.【點睛】關(guān)鍵點點睛:得出四邊形為矩形,利用雙曲線的定義解決焦點三角形問題.15、①.;②.【解析】根據(jù)等差數(shù)列的定義,結(jié)合等差數(shù)列前項和公式、裂項相消法進行求解即可.【詳解】因為點在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因為,所以,于是,故答案為:;16、【解析】對原函數(shù)求導(dǎo)得,令,解得或,且所以原函數(shù)在上的最大值為考點:1.函數(shù)求導(dǎo);2.利用導(dǎo)函數(shù)求最值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】【小問1詳解】設(shè)點,則,整理得曲線的方程:【小問2詳解】因為圓的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因為,令,在上單調(diào)減,,所以18、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個數(shù)確定等差數(shù)列,得通項公式,驗證100和102是否為數(shù)列中的項得結(jié)論;(2)由裂項相消法求和【小問1詳解】首先數(shù)列是遞增數(shù)列,當(dāng)2,4,6為的前三項時,易知此時,100,102都是該數(shù)列中的項,不滿足題意當(dāng),2,6為的前三項時,易知此時,100不是該數(shù)列中的項,102是該數(shù)列中的項,滿足題意所以【小問2詳解】因為所以所以.19、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,元.【解析】(1)以獲勝、以獲勝,則分別要連勝三局,前三局勝兩局輸一局,第四局勝利;(2)求出若兩局之后正常結(jié)束比賽時,的勝率,按照勝率分獎金.【小問1詳解】設(shè)以獲勝、以獲勝的事件分別為,依題意要想獲勝,必須從第一局開始連勝局,;要想獲勝,則前局只能勝局,且第局勝利,故概率;【小問2詳解】設(shè)前兩局雙方戰(zhàn)成后勝,勝的事件分別為.若勝,則可能連勝局,或者局只勝場,第局勝,故概率;由于兩人比賽沒有和局,獲勝的概率為,則獲勝的概率為,若勝,則可能連勝局,或者局只勝場,第局勝,故概率.故獎金應(yīng)分給元,分給元.20、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因為,,即..所以,或.又時,直線過點,不合要求,所以.故存在直線:滿足題設(shè)條件.21、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應(yīng)用裂項相消法求.(3)應(yīng)用錯位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論