安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省蕪湖市鏡湖區(qū)師范大學附中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)y=xa,y=xb,y=cx的圖象如圖所示,則A.c<b<a B.a<b<cC.c<a<b D.a<c<b2.將函數(shù)的圖象先向左平移,然后將所得圖象上所有的點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變),則所得到的圖象對應(yīng)的函數(shù)解析式為A. B.C. D.3.設(shè),則的大小關(guān)系()A. B.C. D.4.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則5.一個孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說法錯誤的是()A.回歸直線一定經(jīng)過樣本點中心B.斜率的估計值等于6.217,說明年齡每增加一個單位,身高就約增加6.217個單位C.年齡為10時,求得身高是,所以這名孩子的身高一定是D.身高與年齡成正相關(guān)關(guān)系6.函數(shù)的零點所在的區(qū)間是A. B.C. D.7.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.8.已知函數(shù),且,則滿足條件的的值得個數(shù)是A.1 B.2C.3 D.49.函數(shù)在一個周期內(nèi)的圖像如圖所示,此函數(shù)的解析式可以是()A. B.C. D.10.冪函數(shù)的圖象過點,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的反函數(shù)為___________.12.已知函數(shù),則滿足的的取值范圍是___________.13.已知向量的夾角為,,則__________.14.空間直角坐標系中,點A(﹣1,0,1)到原點O的距離為_____15.若定義域為的函數(shù)滿足:對任意能構(gòu)成三角形三邊長的實數(shù),均有,,也能構(gòu)成三角形三邊長,則m的最大值為______.(是自然對數(shù)的底)16.在空間直角坐標系中,點關(guān)于平面的對稱點是B,點和點的中點是E,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內(nèi)接正方形PQRS為一水池,其余的地方種花.若,,設(shè)的面積為,正方形PQRS的面積為.(1)用a,表示和;(2)當a為定值,變化時,求的最小值,及此時的值.18.若函數(shù)對任意,恒有(1)指出的奇偶性,并給予證明;(2)如果時,,判斷的單調(diào)性;(3)在(2)的條件下,若對任意實數(shù)x,恒有.成立,求k的取值范圍19.已知函數(shù)(a>0且)是偶函數(shù),函數(shù)(a>0且)(1)求b的值;(2)若函數(shù)有零點,求a的取值范圍;(3)當a=2時,若,使得恒成立,求實數(shù)m的取值范圍20.近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生越來越關(guān)注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形和,其中與、分別相切于點,且與無重疊,剩余部分(陰影部分)種植草坪.設(shè)長為(單位:百米),草坪面積為(單位:萬平方米).(1)試用分別表示扇形和的面積,并寫出的取值范圍;(2)當為何值時,草坪面積最大?并求出最大面積.21.已知函數(shù)()用五點法作出在一個周期上的簡圖.(按答題卡上所給位置作答)()求在時的值域

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由指數(shù)函數(shù)、冪函數(shù)的圖象和性質(zhì),結(jié)合圖象可得a>1,b=12,【詳解】由圖象可知:a>1,y=xb的圖象經(jīng)過點4,2當x=1時,y=c∴c<b<a,故選:A【點睛】本題考查了函數(shù)圖象的識別,關(guān)鍵掌握指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.2、C【解析】把原函數(shù)解析式中的換成,得到y(tǒng)=sin2x+π6-π3的圖象,再把的系數(shù)變成原來的【詳解】將函數(shù)y=sin2x-π3的圖象先向左平移,得到然后將所得圖象上所有的點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),得到y(tǒng)=sin1故選:C3、C【解析】判斷與大小關(guān)系,即可得到答案.【詳解】因為,,,所以.故選:C.【點睛】本題主要考查對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),關(guān)鍵是與中間量進行比較,然后得三個數(shù)的大小關(guān)系,屬于基礎(chǔ)題.4、D【解析】由空間中直線、平面的位置關(guān)系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬中檔題5、C【解析】利用線性回歸方程過樣本中心點可判斷A;由回歸方程求出的數(shù)值是估計值可判斷B、C;根據(jù)回歸方程的一次項系數(shù)可判斷D;【詳解】對于A,線性回歸方程一定過樣本中心點,故A正確;對于B,由于斜率是估計值,可知B正確;對于C,當時,求得身高是是估計值,故C錯誤;對于D,線性回歸方程的一次項系數(shù)大于零,故身高與年齡成正相關(guān)關(guān)系,故D正確;故選:C【點睛】本題考查了線性回歸方程的特征,需掌握這些特征,屬于基礎(chǔ)題.6、B【解析】∵,,,,∴函數(shù)的零點所在區(qū)間是故選B點睛:函數(shù)零點問題,常根據(jù)零點存在性定理來判斷,如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,且有,那么,函數(shù)在區(qū)間內(nèi)有零點,即存在使得

這個也就是方程的根.由此可判斷根所在區(qū)間.7、C【解析】以作為基底表示出,利用平面向量基本定理,即可求出【詳解】∵分別是的中點,∴.又,∴.故選C.【點睛】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力8、D【解析】令則即當時,當時,則令,,由圖得共有個點故選9、A【解析】根據(jù)圖象,先確定以及周期,進而得出,再由求出,即可得到函數(shù)解析式.【詳解】顯然,因為,所以,所以,由得,所以,即,,因為,所以,所以.故選:A10、C【解析】將點代入中,求解的值可得,再求即可.【詳解】因為冪函數(shù)的圖象過點,所以有:,即.所以,故,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題設(shè)可得,即可得反函數(shù).【詳解】由,可得,∴反函數(shù)為.故答案為:.12、【解析】∵在x∈(0,+∞)上是減函數(shù),f(1)=0,∴0<3-x<1,解得2<x<3.13、【解析】由已知得,所以,所以答案:點睛:向量數(shù)量積的求法及注意事項:(1)計算數(shù)量積的三種方法:定義、坐標運算、數(shù)量積的幾何意義,要靈活選用,和圖形有關(guān)的不要忽略數(shù)量積幾何意義的應(yīng)用(2)求向量模的常用方法:利用公式,將模的運算轉(zhuǎn)化為向量的數(shù)量積的運算,解題時要注意向量數(shù)量積運算率的靈活應(yīng)用(3)利用向量垂直或平行的條件構(gòu)造方程或函數(shù)是求參數(shù)或最值問題常用的方法與技巧14、【解析】由空間兩點的距離公式計算可得所求值.【詳解】點到原點的距離為,故答案為:.【點睛】本題考查空間兩點的距離公式的運用,考查運算能力,是一道基礎(chǔ)題.15、##【解析】不妨設(shè)三邊的大小關(guān)系為:,利用函數(shù)的單調(diào)性,得出,,的大小關(guān)系,作為三角形三邊則有任意兩邊之和大于第三邊,再利用基本不等式求出邊的范圍得出的最大值即可.【詳解】在上嚴格增,所以,不妨設(shè),因為對任意能構(gòu)成三角形三邊長的實數(shù),均有,,也能構(gòu)成三角形三邊長,所以,因為,所以,因為對任意都成立,所以,所以,所以,所以,所以m的最大值為故答案為:.16、【解析】先利用對稱性求得點B坐標,再利用中點坐標公式求得點E坐標,然后利用兩點間距離公式求解.【詳解】因為點關(guān)于平面的對稱點是,點和點的中點是,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當時,的值最小,最小值為【解析】(1)利用已知條件,根據(jù)銳角三角形中正余弦的利用,即可表示出和;(2)根據(jù)題意,將表示為的函數(shù),利用倍角公式對函數(shù)進行轉(zhuǎn)化,利用換元法,借助對勾函數(shù)的單調(diào)性,從而求得最小值.【詳解】(1)在中,,所以;設(shè)正方形的邊長為x,則,,由,得,解得;所以;(2),令,因為,所以,則,所以;設(shè),根據(jù)對勾函數(shù)的單調(diào)性可知,在上單調(diào)遞減,因此當時,有最小值,此時,解得;所以當時,的值最小,最小值為.【點睛】本題考查倍角公式的使用,三角函數(shù)在銳角三角形中的應(yīng)用,以及利用對勾函數(shù)的單調(diào)性求函數(shù)的最值,涉及換元法,屬綜合性中檔題.18、(1)奇函數(shù),證明見解析;(2)在R上單調(diào)遞減,證明見解析;(3)【解析】(1)利用賦值法求出,根據(jù)函數(shù)奇偶性定義即可證明;(2)根據(jù)函數(shù)單調(diào)性定義即判斷函數(shù)的單調(diào)性;(3)結(jié)合函數(shù)的奇偶性和單調(diào)性,將不等式進行等價轉(zhuǎn)化,即可得到結(jié)論【詳解】(1)為奇函數(shù);證明:令,得,解得:令,則,所以函數(shù)為奇函數(shù);(2)在R上單調(diào)遞減;證明:任意取,且,則,又,即所以在R上單調(diào)遞減;(3)對任意實數(shù)x,恒有等價于成立又在R上單調(diào)遞減,即對任意實數(shù)x,恒成立,當時,即時,不恒成立;當時,即時,則,解得:所以實數(shù)k的取值范圍為【點睛】方法點睛:本題考查函數(shù)的單調(diào)性、奇偶性及含參不等式的解法,要設(shè)法把隱性轉(zhuǎn)化為顯性,方法是:(1)把不等式轉(zhuǎn)化為的模型;(2)判斷的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性將“”脫掉,得到具體的不等式組來求解,但注意奇偶函數(shù)的區(qū)別.19、(1)(2)(3)【解析】(1)根據(jù)f(x)為偶函數(shù),由f(-x)=-f(x),即對恒成立求解;(2)由有零點,轉(zhuǎn)化為有解,令,轉(zhuǎn)化為函數(shù)y=p(x)圖象與直線y=a有交點求解;(3)根據(jù),使得成立,由求解.【小問1詳解】解:因f(x)為偶函數(shù),所以,都有f(-x)=-f(x),即對恒成立,對恒成立,對恒成立,所以【小問2詳解】因為有零點即有解,即有解令,則函數(shù)y=p(x)圖象與直線y=a有交點,當0<a<1時,無解;當a>1時,在上單調(diào)遞減,且,所以在上單調(diào)遞減,值域為由有解,可得a>0,此時a>1,綜上可知,a的取值范圍是;【小問3詳解】,當時,,由(2)知,當且僅當時取等號,所以的最小值為1,因為,使得成立,所有,即對任意的恒成立,設(shè),所以當t>1時,恒成立,即,對t>1恒成立,設(shè)函數(shù)在單調(diào)遞減,所以,所以m≥0,即實數(shù)m的取值范圍為20、(1),,;(2)時,草坪面積最大,最大面積為萬平方米.【解析】(1)因為,所以可得三個扇形的半徑,圓心角都為,由扇形的面積公式可得答案;(2)用三角形面積減去三個扇形面積可得草坪面積,再利用二次函數(shù)可求出最值.【詳解】(1),則,,在扇形中,的長為,所以,同理,.∵與無重疊,∴,即,則.又三個扇形都在三角形內(nèi)部,則,∴.(2)∵,∴,∴當時,取得最大值,為.故當長為百米時,草坪面積最大,最大面積為萬平方米.【點睛】弧度制中求扇形弧長和面積的關(guān)鍵在于確定半徑和扇形圓心角弧度數(shù),解題時通常要根據(jù)已知條件列出方程,運用方程思想求解,強化了數(shù)學運算的素養(yǎng).屬于中檔題.21、(1)見解析;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論