進(jìn)度07-笛卡爾積-附作業(yè)答案(SQL基礎(chǔ)培訓(xùn)資料)_第1頁(yè)
進(jìn)度07-笛卡爾積-附作業(yè)答案(SQL基礎(chǔ)培訓(xùn)資料)_第2頁(yè)
進(jìn)度07-笛卡爾積-附作業(yè)答案(SQL基礎(chǔ)培訓(xùn)資料)_第3頁(yè)
進(jìn)度07-笛卡爾積-附作業(yè)答案(SQL基礎(chǔ)培訓(xùn)資料)_第4頁(yè)
進(jìn)度07-笛卡爾積-附作業(yè)答案(SQL基礎(chǔ)培訓(xùn)資料)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

知識(shí)點(diǎn):1、笛卡爾介紹笛卡爾,近代法國(guó)著名哲學(xué)家、物理學(xué)家、數(shù)學(xué)家、神學(xué)家。主要成就概述笛卡爾在科學(xué)上的貢獻(xiàn)是多方面的。笛卡爾不僅在哲學(xué)領(lǐng)域里開辟了一條新的道路,同時(shí)笛卡爾又是一勇于探索的科學(xué)家,在物理學(xué)、生理學(xué)等領(lǐng)域都有值得稱道的創(chuàng)見,特別是在數(shù)學(xué)上他創(chuàng)立了解析幾何,從而打開了近代數(shù)學(xué)的大門,在科學(xué)史上具有劃時(shí)代的意義。但他的哲學(xué)思想和方法論,在其一生活動(dòng)中則占有更重要的地位。他的哲學(xué)思想對(duì)后來(lái)的哲學(xué)和科學(xué)的發(fā)展,產(chǎn)生了極大的影響。數(shù)學(xué)方面成就笛卡爾對(duì)數(shù)學(xué)最重要的貢獻(xiàn)是創(chuàng)立了解析幾何。在笛卡爾時(shí)代,代數(shù)還是一個(gè)比較新的學(xué)科,幾何學(xué)的思維還在數(shù)學(xué)家的頭腦中占有統(tǒng)治地位。笛卡爾致力于代數(shù)和幾何聯(lián)系起來(lái)的研究,并成功地將當(dāng)時(shí)完全分開的代數(shù)和幾何學(xué)聯(lián)系到了一起。于1637年,在創(chuàng)立了坐標(biāo)系后,成功地創(chuàng)立了解析幾何學(xué)。他的這一成就為微積分的創(chuàng)立奠定了基礎(chǔ),而微積分又是現(xiàn)代數(shù)學(xué)的重要基石。解析幾何直到現(xiàn)在仍是重要的數(shù)學(xué)方法之一。哲學(xué)方面成就笛卡爾被廣泛認(rèn)為是西方現(xiàn)代哲學(xué)的奠基人,他第一個(gè)創(chuàng)立了一套完整的哲學(xué)體系。哲學(xué)上,笛卡爾是一個(gè)二元論者以及理性主義者。物理學(xué)方面成就笛卡爾靠著天才的直覺(jué)和嚴(yán)密的數(shù)學(xué)推理,在物理學(xué)方面做出了有益的貢獻(xiàn)。從1619年讀了約翰尼斯·開普勒的光學(xué)著作后,笛卡爾就一直關(guān)注著透鏡理論;并從理論和實(shí)踐兩方面參與了對(duì)光的本質(zhì)、反射與折射率以及磨制透鏡的研究。他把光的理論視為整個(gè)知識(shí)體系中最重要的部分。笛卡爾堅(jiān)信光是“即時(shí)”傳播的,他在著作《論人》和《哲學(xué)原理》中,完整的闡發(fā)了關(guān)于光的本性的概念。笛卡爾運(yùn)用他的坐標(biāo)幾何學(xué)從事光學(xué)研究,并在《屈光學(xué)》中首次對(duì)光的折射定律提出了理論論證。與荷蘭的斯涅耳共同分享發(fā)現(xiàn)光的折射定律的榮譽(yù)。他認(rèn)為光是壓力在以太中的傳播,他從光的發(fā)射論的觀點(diǎn)出發(fā),用網(wǎng)球打在布面上的模型來(lái)計(jì)算光在兩種媒質(zhì)分界面上的反射、折射和全反射,從而首次在假定平行于界面的速度分量不變的條件下導(dǎo)出折射定律;不過(guò)他的假定條件是錯(cuò)誤的,他的推證得出了光由光疏媒質(zhì)進(jìn)入光密媒質(zhì)時(shí)速度增大的錯(cuò)誤結(jié)論。他還對(duì)人眼進(jìn)行光學(xué)分析,解釋了視力失常的原因是晶狀體變形,設(shè)計(jì)了矯正視力的透鏡。他還用光的折射定律解釋彩虹現(xiàn)象,并且通過(guò)元素微粒的旋轉(zhuǎn)速度來(lái)分析顏色。在力學(xué)方面,笛卡爾則發(fā)展了伽利略運(yùn)動(dòng)相對(duì)性的理論。例如在《哲學(xué)原理》一書中,舉出在航行中的海船上海員懷表的表輪這一類生動(dòng)的例子,用以說(shuō)明運(yùn)動(dòng)與靜止需要選擇參考系的道理。笛卡爾在《哲學(xué)原理》第二章中以第一和第二自然定律的形式比較完整地第一次表述了慣性定律:只要物體開始運(yùn)動(dòng),就將繼續(xù)以同一速度并沿著同一直線方向運(yùn)動(dòng),直到遇到某種外來(lái)原因造成的阻礙或偏離為止。這里他強(qiáng)調(diào)了伽利略沒(méi)有明確表述的慣性運(yùn)動(dòng)的直線性。在這一章中,他還第一次明確地提出了動(dòng)量守恒定律:物質(zhì)和運(yùn)動(dòng)的總量永遠(yuǎn)保持不變。為能量守恒定律奠定了基礎(chǔ)。笛卡爾發(fā)現(xiàn)了動(dòng)量守恒原理的原始形式(笛卡爾所定義的動(dòng)量是一絕對(duì)值,不是向量,因此他的動(dòng)量守恒原理后來(lái)也被證明是錯(cuò)誤的)。笛卡爾對(duì)碰撞和離心力等問(wèn)題曾作過(guò)初步研究,給后來(lái)克里斯蒂安·惠更斯的成功創(chuàng)造了條件。天文學(xué)方面成就笛卡爾把他的機(jī)械論觀點(diǎn)應(yīng)用到天體,發(fā)展了宇宙演化論,形成了他關(guān)于宇宙發(fā)生與構(gòu)造的學(xué)說(shuō)。笛卡爾的天體演化說(shuō)、旋渦模型和近距作用觀點(diǎn),正如他的整個(gè)思想體系一樣,一方面以豐富的物理思想和嚴(yán)密的科學(xué)方法為特色,起著反對(duì)經(jīng)院哲學(xué)、啟發(fā)科學(xué)思維、推動(dòng)當(dāng)時(shí)自然科學(xué)前進(jìn)的作用,對(duì)許多自然科學(xué)家的思想產(chǎn)生深遠(yuǎn)的影響;而另一方面又經(jīng)常停留在直觀和定性階段,不是從定量的實(shí)驗(yàn)事實(shí)出發(fā),因而一些具體結(jié)論往往有很多缺陷,成為后來(lái)牛頓物理學(xué)的主要對(duì)立面,導(dǎo)致了廣泛的爭(zhēng)論。他還發(fā)展了宇宙演化論、漩渦說(shuō)等理論學(xué)說(shuō),雖然具體理論有許多缺陷,但依然對(duì)以后的自然科學(xué)家產(chǎn)生了影響。心里學(xué)方面成就笛卡爾在心理學(xué)上的觀點(diǎn)和重大發(fā)現(xiàn),對(duì)后來(lái)心理學(xué)頗有影響。他是近代二元論和唯心主義理論著名的代表。他的反射和反射弧的重大發(fā)現(xiàn),為“動(dòng)物是機(jī)器”的論斷提供了重要依據(jù)。并提出,反應(yīng)----刺激的假設(shè)。笛卡爾的二元論心理學(xué)思想雖然在理論上是錯(cuò)誤的,但是在當(dāng)時(shí)社會(huì)背景下,是非常具有推動(dòng)和進(jìn)步作用的,他利用二元論擺脫了神學(xué)對(duì)科學(xué)的絕對(duì)控制,將人們的思想引導(dǎo)至理性思維和具體研究上,所以,他對(duì)心理學(xué)的貢獻(xiàn)是不可忽視的。========================================================================================================2、什么是笛卡爾積?笛卡爾積是指在數(shù)學(xué)中,兩個(gè)集合X和Y的笛卡尓積(Cartesianproduct),又稱直積,表示為X×Y,第一個(gè)對(duì)象是X的成員而第二個(gè)對(duì)象是Y的所有可能有序?qū)Φ钠渲幸粋€(gè)成員。笛卡爾積又叫笛卡爾乘積,簡(jiǎn)單的說(shuō)就是兩個(gè)集合相乘的結(jié)果。假設(shè)集合A={a,b},集合B={0,1,2},則兩個(gè)集合的笛卡爾積為{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。用表格表示如下:(A有2個(gè)數(shù),B有3個(gè)數(shù),形成2乘3=6種組合)a0a1a2b0b1b2設(shè)A,B為集合,用A中元素為第一元素,B中元素為第二元素構(gòu)成有序?qū)?,所有這樣的有序?qū)M成的集合叫做A與B的笛卡爾積,記作AxB。笛卡爾積的符號(hào)化為:A×B={(x,y)|x∈A∧y∈B}備注1:“∈”是數(shù)學(xué)中的一種符號(hào)。讀作“屬于”。若a∈A,則a屬于集合A,a是集合A中的元素。數(shù)學(xué)上讀此符號(hào)時(shí),直接可以用“屬于”這個(gè)詞來(lái)表達(dá)。備注2:Λ是第十一個(gè)希臘字母,是邏輯運(yùn)算的一種符號(hào),表示邏輯與。例如,A={a,b},B={0,1,2},則A×B={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}B×A={(0,a),(0,b),(1,a),(1,b),(2,a),(2,b)}運(yùn)算編輯1.對(duì)任意集合A,根據(jù)定義有AxΦ=Φ,ΦxA=Φ備注:數(shù)學(xué)上代表空集2.一般地說(shuō),笛卡爾積運(yùn)算不滿足交換律,即AxB≠BxA(當(dāng)A≠Φ∧B≠Φ∧A≠B時(shí))3.笛卡爾積運(yùn)算不滿足結(jié)合律,即(AxB)xC≠Ax(BxC)(當(dāng)A≠Φ∧B≠Φ∧C≠Φ時(shí))4.笛卡爾積運(yùn)算對(duì)并和交運(yùn)算滿足分配律,即Ax(B∪C)=(AxB)∪(AxC)(B∪C)xA=(BxA)∪(CxA)Ax(B∩C)=(AxB)∩(AxC)(B∩C)xA=(BxA)∩(CxA)假設(shè)集合A={a,b},集合B={0,1,2},集合C={紅,黃,藍(lán),綠}。笛卡爾積結(jié)果如下:(A、B、C形成2乘3乘4=24種組合)運(yùn)算1:先算A、B兩個(gè)表的笛卡爾積結(jié)果:(2乘3=6種組合)a0a1a2b0b1b2運(yùn)算2:再算運(yùn)算1的笛卡爾積結(jié)果,和C表生成的笛卡爾積結(jié)果:(6乘4=24種組合)a0紅a1紅a2紅b0紅b1紅b2紅a0黃a1黃a2黃b0黃b1黃b2黃a0藍(lán)a1藍(lán)a2藍(lán)b0藍(lán)b1藍(lán)b2藍(lán)a0綠a1綠a2綠b0綠b1綠b2綠======================================================================================================學(xué)習(xí)作業(yè)7:假設(shè),學(xué)生表、班級(jí)表、年級(jí)表,計(jì)算這三個(gè)表的笛卡爾積,用表格描述,并體現(xiàn)計(jì)算的中間過(guò)程。把運(yùn)算結(jié)果提交給楓山。學(xué)生表內(nèi)碼姓名001張三002李四003王五班級(jí)表內(nèi)碼班級(jí)10022班10033班年級(jí)表內(nèi)碼年級(jí)11年級(jí)22年級(jí)=============================================

=============================================進(jìn)度7作業(yè)答案公布:學(xué)生表集合A{張三,李四,王五},班級(jí)表集合B{2班,3班}年級(jí)表集合C{1年級(jí),2年級(jí)}運(yùn)算

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論